

International Journal of Advance Research in Engineering, Science & Technology

e-ISSN: 2393-9877, p-ISSN: 2394-2444

Volume 3, Issue 9, September-2016

A Brief & Comparative Study on the Antimicrobial Evaluation of 3,5 Di- Substituted Pyrazoles with the Bromo-Substituted Pyrazoles.

Dr. Lokesh Sachdev, Ms. Manpreet Kaur, Mr. Lavesh Gupta.

- 1. (M.B.B.S., S.P. Medical College, Bikaner)
 - 2. (B.Sc(h), Amity University, Noida)
 - 3. (ECE Engineer, Bikaner, Rajasthan)

Abstract: The new substituted pyrazoles were prepared from the 2 hydroxy-3,5- dichloro acetophenone in ethanol and aromatic aldehyde as the starting materials through 1,3-diketones as the intermediates. The intermediates on reaction with the hydrazines in the alkaline media, finally gets converted into corresponding pyrazoles. The synthesized compounds were characterized by their physical properties, IR and NMR spectroscopic studies. The antimicrobial activity of synthesized pyrazoles was assessed by agar cup method and filter paper disc method. Purity of these heterocycles was checked by the TLC. These compounds were tested for the antimicrobial activity against pathogenic bacteria, i.e., Staphylococeus aureus, Klebsiella pneumoniae, Salmonella typhi, Proteus vulgaris, Shigella flexueri, Escherichia coli & Pseudomonas aerugivosa & MIC are found to have remarkable activity. In maximum cases, pyrazole having bromo substitution on styryl ring was found to be more efficient than remaining against some micro-organisms.

Keywords: Pyrazoles, Phenyl hydrazine, 1,3-diketone, antibacterial activity, anti- fungal activity, microorganisms.

I. INTRODUCTION:

Pyrazoles are the five member ring heterocyclic compounds, having some structural features with 2 nitrogen atoms in adjacent positions and are also called as Azoles [1]. Recently, Pyrazole derivatives have been found in the nature [1], β -[1- pyrazolyl]alanine was isolated from the seeds of water melons [Citurllus lanatus]. Best described property of almost each group of pyrazoles is in treatment of inflammation and inflammation associated disorders, such as the arthritis [2].

Pyrazole derivatives are subject of many research studies due to their widespread potential biological activities like antimicrobial [3], antiviral [4], antitumor [5,6], antihistaminic [7], antidepressant [8], insecticides [9] and fungicides [9].

Several pyrazole derivatives are found to possess significant activities like $5-\alpha$ -red-uctase inhibitor [10], antiproliferative [11], antiparasitic [12], herbicides [13]. A great number of pyrazoles have been reported to have interesting biological activities like anti-inflammatory [14] and antiprotozoal [15-16], which render them valuable active ingredients of medicine and plant protecting agents. Further, the current literature indicates 1,2-pyrazole derivatives to possess various biological activities [17].

Substituted pyrazole and its analogs are used as precursors for the synthesis of various biologically active molecules. In recent years, efficiency of the microwave chemistry in dramatically reducing reaction times has recently been prove in different fields of organic chemistry [18], microwave assisted organic synthesis has shown great improvement in generation of combinatorial libraries of small molecules.

II. MATERIALS AND METHODS

Materials & physical measurements:

Melting points were measured by Stuart Scientific melting point apparatus in the open capillaries and are uncorrected. Infrared spectra (KBr discs) were recorded on Bruker Alpha (FTIR) Spectrometer. 1H-NMR spectra were recorded on Bruker spectrometer, operating at 400 MHz using DMSO-d6 and CDCl₃ as a solvent with the

TMS as an internal standard. Elemental analysis was performed using a (EURO EA 3000 instrument). Acme silica was used for the analytical TLC. Other analytical grade chemicals and solvents were obtained from commercial sources and used as received standard procedure.

Antimicrobial activity of compounds was assessed by cup plate agar diffusion method. Titled compounds were tested against pathogenic bacteria for their antibacterial activity by paper disk method. The organisms tested were Staphylococeus aureus, Klebsiella pneumoniae, Salmonella typhi, Proteus vulgaris, Shigella flexueri, Escherichia coli & Pseudomonas aerugivosa. Solution of these compounds were prepared in DMSO as a solvent at concentration of 50μ /ml. Culture medium used was nutrient agar. After 24 hours of inhibition at 37^{0} C, the zones of the inhibition were measured in mm.

Preparation of the newly substituted pyrazoles:

A) General procedure for the 1,3,5-trisubstituted pyrazoles: A Mixture of 3-iodoflavanone, nucleophile such as Isonicotinic acid hydrazide, semicarbazide and thiosemicarbazide in pyridine (40ml) was refluxed for 5 hours. Reaction mixture was diluted by 1:1 HCl. The Product obtained was crystallized from the ethanol-acetic acid mixture to get the pale yellow product.

Physical data of 1,3,5-trisubstituted pyrazoles [3/4/5(a-e)]:											
Compound	\mathbf{R}_1	\mathbf{R}_2	\mathbb{R}_3	Yield (%)	m.p. (⁰ C)	Rf value	Molecular Formula				
3a	Н	OCH_3	CONC ₅ H ₄	75	212	0.62	$C_{22}H_{15}O_3Cl_2N_3$				
3b	Н	Н	CONC ₅ H ₄	70	114	0.74	$C_{21}H_{13}O_2Cl_2N_3$				
3c	Cl	Н	CONC ₅ H ₄	70	180	0.7	$C_{21}H_{12}O_2Cl_3N_3$				
3d	NO_2	Н	CONC ₅ H ₄	72	218-222	0.81	$C_{21}H_{12}O_{4}Cl_{2}N_{4} \\$				
3e	Н	ОН	CONC ₅ H ₄	76	264	0.66	$C_{21}H_{13}O_3Cl_2N_3$				
4a	Н	OCH_3	CONH ₂	75	210	0.55	$C_{17}H_{13}O_3Cl_2N_3$				
4b	Н	Н	CONH ₂	76	230	0.69	$C_{16}H_{11}O_{2}Cl_{2}N_{3}$				
4c	Cl	Н	CONH ₂	70	236	0.51	$C_{16}H_{10}O_{2}Cl_{3}N_{3}$				
4d	NO_2	Н	CONH ₂	75	234	0.90	$C_{16}H_{10}O_{3}Cl_{2}N_{4} \\$				
4e	Н	ОН	CONH ₂	75	250	0.67	$C_{16}H_{11}O_3Cl_2N_3$				
5a	Н	OCH_3	CSNH ₂	70	220	0.52	$C_{16}H_{11}O_{2}Cl_{2}N_{3}S$				
5b	Н	Н	CSNH ₂	76	212	0.69	$C_{16}H_{11}O_{2}Cl_{2}N_{3}S$				
5c	Cl	Н	CSNH ₂	70	198	0.52	$C_{16}H_{10}OCl_3N_3S$				
5d	NO_2	Н	CSNH ₂	76	165	0.69	$C_{16}H_{10}O_3Cl_2N_4S$				
5e	Н	ОН	CSNH ₂	76	240	0.69	$C_{16}H_{11}O_2Cl_2N_3$				

Spectral interpretation: 3a) IR (v max, cm⁻¹):

3349(-OH Stretch), 2921(-C-H Stretch), 1602.1(C=N Stretch), 736(C-Cl Stretch)

NMR (CDCl $_3$ +DMSO) (δ ppm):

1Hb,-CH), 6.7-7.99(m, 6H,Ar-H)

4a) IR (v max, cm⁻¹):

3386(-OH Stretch), 2924(-C-H Stretch), 1602.1(C=N

Stretch), 727(C-Cl Stretch)

NMR (CDCl ₃+DMSO) (δ ppm):

 $2.17(S, 3H, -OCH_3), 6.78(S, 2H, -NH_2), 6.83-8.03(m, 6H,Ar-H)$

5a) IR (v max, cm⁻¹):

3382(-OH Stretch), 2920.8(-C-H Stretch), 1602.4(C=N

Stretch), 754.8(C-Cl Stretch), 1265.9(C-N Stretch)

NMR (CDCl₃+DMSO) (δ ppm):

2.60(S, 3H, -OCH₃), 6.7 (S, 2H, -NH₂), 6.9-7.9 (m, 6H,Ar- H)

2.2 B General procedure for 3, 5 – diaryl -1-substituted - 4-bromo pyrazoles:

1-(2-hydroxy -3, 5-dichloro phenyl) -3-aryl-2-bromo propan -1, 3-diones was dissolved in the ethanol & nucleophile such as the isonicotinic acid hydrazide, semicarbazide, thiosemicarbazide was added to it. The reaction mixture was refluxed for about 2.5 hours in a basic medium. It was cooled & then poured into water. The product was filtered, washed with water and crystallized from ethanol to obtained pale yellowish crystals of 3,5 - diaryl -1-substituted -4-bromo pyrazoles.

Physical data of 3, 5 – diaryl -1-substituted -4-bromo pyrazoles 6,7,8 (a-d):

				-/			ores of the (at a).
Comp.	R_1	R_2	R_3	Yields %	M.P. ⁰ C	Rf	Molecular formula
6a	Н	Н	C ₅ H ₄ NCO	75	208	0.95	$C_{21}H_{12}O_2Cl_2BrN_3$
6b	Н	OCH ₃	C ₅ H4NCO	70	150	0.80	$C_{22}H_{14}O_3Cl_2BrN_3$
6c	Cl	Н	C ₅ H ₄ NCO	70	280	0.89	$C_{21}H_{11}O_2Cl_3BrN_3$
6d	Н	NO ₂	C ₅ H ₄ NCO	60	210	0.92	$C_{21}H_{11}O_4Cl_2BrN_4$
7a	Н	Н	CONH ₂	65	178	0.92	$C_{16}H_{10}O_2Cl_2BrN_3$
7b	Н	OCH ₃	CONH ₂	70	172	0.88	$C_{17}H_{12}O_3Cl_2BrN_3$
7c	Cl	Н	CONH ₂	75	132	0.88	$C_{16}H_{10}O_2Cl_3BrN_3$
7d	Н	NO ₂	CONH ₂	70	198	0.88	C ₁₆ H ₉ O ₄ Cl ₂ BrN ₄
8a	Н	Н	CSNH ₂	70	182	0.88	$C_{16}H_{10}OCl_2BrN_3S$
8b	Н	OCH ₃	CSNH ₂	65	160	0.92	$C_{16}H_{10}O_2Cl_2BrN_3S$
8c	Cl	Н	CSNH ₂	70	228	0.86	C ₁₆ H ₉ OCl ₃ BrN ₃ S
8d	Н	NO ₂	CSNH ₂	75	125	0.95	C ₁₆ H ₉ O ₃ Cl ₂ BrN ₄ S

Spectral Interpretation:

6a) IR (v max cm⁻¹):

31264.7(-OH Stretch), 1657.2(C=O Stretch), 1613.4(C=N stretch), 682,716 (C-Cl Stretch).543.6(-C-Br Stretch)

NMR (CDCl ₃+DMSO) (δ ppm)

1.25 (S, 1H,-OH), 6.87-8.77 (m, 11H, Ar –H)

7a) IR (v max cm⁻¹):

3422.8(-OH Stretch), 1664.5(C=O Stretch), 1594.9(C=N

stretch), 766,854 (C-Cl Stretch), 563.4(-C-Br Stretch), 1292(C-N Stretch)

NMR (CDCl 3+DMSO) (δ ppm)

8.39 (S, 1H,-OH), 8.02(S, 2H,-NH2), 6.87-8.00(m, 7 H, Ar _H)

III. ANTIMICROBIAL ACTIVITY:

Preparation of Inoculum:

The gram positive (Staphylococcus aureus & Klebsiella pneumoniae) & gram negative bacteria (Salmonella typhi, Proteus vulgaris, Proteus vulgaris, Shigella flexueri and Escherichia coli) were pre-cultured in nutrient broth overnight in rotary shaker at 37°C, centrifuged at 10,000 rpm for 5 min, pellet was suspended in the double distilled water and cell density was standardized spectrophotometrically (A nm). Fungal inoculums (Aspergillus niger and A. flavus) was prepared from 5 to 10 day old culture grown on Potato dextrose agar medium.

The Petri dishes were flooded with 8-10 ml of distilled water and conidia were scraped using sterile spatula. The spore density of each fungus was adjusted with the spectrophotometer (A nm) to obtain a final concentration of about 105 spores/ml.

Anti-bacterial activity: Determination by the Agar cup method:

The antibacterial activity of pyrazole derivatives was studied by agar cup method. Glass Petri dishes used were sterilized and Nutrient broth was used as the basal medium for testing of bacteria. Nutrient broth medium was prepared by taking Beet extract (1 gm/lit), Yeast extract (2 gm/lit), peptone (5.0 gm/it), NaCl (5 gm/lit) Agar (15gm/lit) and with pH (7.0), and plated into Petri dishes, allowed to solidification. Selected Bacterial culture, single colony was inoculated into broth medium and kept for the incubation for overnight at 25 degree Celsius. The overnight Bacterial culture was spread over entire surface and left undisturbed for few minutes to percolate culture. Wells (4 mm) were created using a sterile borer into solidified agar medium. Selected compounds were added to each well (100 & 50 μ L) at peripheral & reference compound (Chloramphenacol) was added at centre. Thus, prepared plates were incubated at the room temperature (25°C) for about 3-5 days. After incubation period, plates were collected and inhibition zone reading was recorded in mm. (from the margin of the well to surface of inhibition). Dimethyl sulphoxide (DMSO) was used as a solvent to prepare stock solutions (5 mg in 0.5ml) of the compounds initially and also to maintain proper control.

Antifungal Activity:

Determination by filter paper disc method:

The antifungal activity was tested by the disc diffusion method. Potato dextrose agar was used as the basal medium for testing of fungi. Potato dextrose agar medium was prepared by taking the yeast extract (3 gm/lit), peptone (10 gm/it), Dextrose (20 gm/lit) Agar (15 gm/lit) distilled water (1 lit) and with pH (6.0), and plated into Petri dishes, allowed to solidification. Potato dextrose agar plates were inoculated with each fungal culture (10 days in old) by the

point inoculation. Filter paper discs (5mm diameter) impregnated with $100~\mu l$ and $50~\mu l$ concentrations of extracts were placed on the test organism-seeded plates. DMSO was used to dissolve tested compounds and was completely evaporated before application on the test organism-seeded plates. Blank disc impregnated with solvent DMSO, followed by drying off was used as negative control and Nystatin ($10\mu g$) used as a positive control. The activity was determined after 72 hrs of incubation at $28^{\circ}C$. Diameters of the inhibition zones were measured in mm.

Antimicrobial activity of the 1,3,5-trisubstituted pyrazoles [3/4/5(a-e)]: (Inhibition zone in mm)

Microorganisms	3a	3b	3c	3d	3e	4a	4b	4c	4d	4e	5a	5b	5c	5d 5e
S. aureus	17	13	16	20	20	16	12	13	12	12	12	18	15	13 12
K. pneumone	20	14	15	15	14	19	16	12	13	15	15	14	13	11 14
S. typhi	16	13	13	11	13	16	13	11	12	13	13	13	11	13 18
P. vulgaris	15	16	17	15	14	20	12	12	14	22	17	12	15	16 17
S. flexueri	16	17	15	11	16	12	15	11	15	18	14	18	11	15 12
E. colli	17	17	18	16	15	15	14	12	18	14	14	18	16	13 14
P. aerugivosa	21	16	17	18	17	15	15	11	12	15	17	22	16	12 16

Minimum inhibitory concentration of 1, 3, 5-trisubstituted pyrazoles [3/4/5(a-e)]:(MIC value in μg/ml)

Comp	S. aureus	K. pneumone	S.typhi	P.vulgaris	S. flexueri	E. colli P	. aerugivosa
3a	150	150	200	200	150	150	200
3b	600	600	600	600	400	600	800
3c	300	450	600	450	300	450	450
3d	50	50	70.5	70.5	70.5	50	70.5
3e	200	400	200	400	300	300	300
4a	300	400	300	300	200	300	300
4b	300	300	400	400	300	300	200
4c	400	400	400	800	400	400	400
4d	100	100	100	200	100	100	150
4e	400	600	400	800	600	400	600
5a	300	300	400	400	200	300	300
5b	600	600	600	600	400	600	600
5c	600	400	400	800	400	400	600
5d	200	300	200	400	200	200	300

5e	400	800	600	600	600	600	800	
Cl	25	28	25	32	25	25	28	

Cl-Chloramphenacol

Antimicrobial activity of 3,5—diaryl-1-substituted-4-bromo pyrazoles 6, 7, 8(a-d):

Microorgani sms	6a	6b	6c	6d	7a	7b	7c	7d	8a	8b	8c	8d
S.aureus	23	14	22	15	12	24	18	17	20	22	16	18
K. pneumoniae	23	12	25	22	21	14	14	23	21	14	22	15
S. typhi	14	17	16	24	14	18	20	21	17	18	15	16
P. vulgaris	19	18	17	20	15	23	14	15	16	15	16	19
S. flexueri	16	17	12	13	12	15	21	12	15	21	13	20
E. colli	21	13	18	15	17	14	21	13	17	16	21	12
P. aerugivosa	13	22	20	22	15	24	21	22	24	22	11	13

Highly active 20-30, moderately active 15-20, weakly active 11-15, less than 11 inactive

Minimum inhibitory concentration of 3, 5 – diaryl -1-substituted -4-bromo pyrazoles 6,7,8 (a-d) (MIC value in μ g/ml)

varue m	μ 5/1111)						
Comp	S. aureus	K.pneumone	S. typhi	P. vulgaris	S. flexueri	E. colli	P. aerugivosa
6a	150	150	200	100	150	100	150
6b	150	100	150	150	100	100	150
6c	600	600	600	600	400	400	600
6d	400	800	600	600	400	400	600
7a	150	150	100	150	100	100	200
7b	150	100	150	200	150	100	150
7c	400	800	800	600	400	400	600
7d	400	600	600	600	400	600	400
8a	150	150	150	150	200	150	200
8b	200	200	150	250	150	100	1500
8c	400	600	600	800	600	600	400

8d	400	800	600	600	400	600	600	
Cl	25	28	25	32	25	25	28	
	(15)	(7.5)	(15)	(4)	(15.5)	(12.5)	(7.5)	

Cl-Chloramphenacol

IV.RESULT & DISCUSSION:

S. aureus shows MIC value 50 μ g/ml against 3d. 100 μ g/ml against 4d. 150 μ g/ml against 3a, 6a,6b,7a,7b,8a. 200 μ g/ml against 3e,5d. 300 μ g/ml against 4a,4b and 5a. 400 μ g/ml against 6d,7c,7d,8c,8d and 600 μ g/ml against 3b,5b,5c and 6c.

K. pneumone shows MIC value 50 μ g/ml against 3d. 100 μ g/ml against 4d, 6b and 7b. 150 μ g/ml against 3a, 6a,7a and 8a. 200 μ g/ml against 8b. 300 μ g/ml against 4b,5a,5d. 400 μ g/ml against 3e,4a,4c,5c. 450 μ g/ml against 3c. 600 μ g/ml against 3b,4e,5b, 6c,7d,8c. and 800 μ g/ml against 5e, 6d,7c,8d.

S. typhi shows MIC value 70.5 μ g/ml against 3d. 100 μ g/ml against 4d, 6b,7b,8a,8b. 200 μ g/ml against 3a,3e,5d and 6a. 300 μ g/ml against 4a. 400 μ g/ml against 4b,4c,4e,5a,5c. 600 μ g/ml against 3b,3c,5b,5e. us.

P.vulgaris shows MIC value 70.5 μ g/ml against 3d. 150 ug/ml against 6b,7a,8a 200 μ g/ml against 3a,4d and 8b. 300 μ g/ml against 4a. 400 μ g/ml against 3e,4b, 5a,5d. 450 μ g/ml against 3c. 600 μ g/ml against 3b,5b,5e, 6c,6d,7c,7d and 8d. 800 μ g/ml against 4c,4e,5c and 8c.

S. flexueri shows MIC value 70.5 μ g/ml against 3d. 100 μ g/ml against 4d and 6b. 150 μ g/ml against 3a,6a,7b,8b. 200 μ g/ml against 4a,5a,5d and 8a. 300 μ g/ml against 3c,3e,4b. 400 μ g/ml against 3b,4c,5b,5c, 6c,6d,7c,7d,8d. and 600 μ g/ml against 4e,5e and 8c.

E. colli shows MIC value 50 μ g/ml against 3d. 100 μ g/ml against 4d, 6a,6b,7a.7b,8b. 150 μ g/ml against 3a and 8a. 200 μ g/ml against 5d. 300 μ g/ml against 3e,4a,4b,5a. 400 μ g/ml against 4b,4e,5c, 6d,7c. 450 μ g/ml against 3c. and 600 μ g/ml against 3b,5b,5e, 7d,8c,8d.

P. aerugivosa shows MIC value 70.5 μ g/ml against 3d. 150 μ g/ml against 4d, 6a,6b,7b,8b.. 200 μ g/ml against 3a,4b,5a,6a. 400 μ g/ml against 4c,5d,6c. 450 μ g/ml against 3c and 600 μ g/ml against 5b,5c,4e,4c,4d,5c,6d. 800 μ g/ml against 3b,5e.

v. CONCLUSION:

Compounds were found to be active in MIC range 50- $600 \mu g/ml$ for the gram positive bacteria and 200- $800 \mu g/ml$ for the gram negative bacteria. Increasing MIC value is observed with the increasing zone of inhibition. The compound containing Hydroxy and Methoxy groups together, were found to be fourfold more active than without hydroxy and methoxy groups compounds. In many cases, pyrazole having the bromo substitution on styryl ring was found more efficient than those, remaining against some micro-organisms.

REFERENCES:

- [1] T, Eicher, S.Hauptmann, (2003), Edition IInd, 'The Chemistry of Heterocycles: Structure, Reactions, Syntheses, and Applications', Wiley-VCH, ISBN 3527307206.
- [2] J. John. Talley; J. Donald, Jr. Rogier, both of St. Louis, Mo. G.D. Searle & Co., Skokie, **1995**, Pt No: 5, 434, 178.
- [3] E.V.Pimerova, E.V. Voronina, *Pharm. Chem. J.*, **2001**, 35, 18-20.
- [4] S.L. Janus; A.Z. Magdif; B.P. Erik; N.Claus; Chem., 1999, 130, 1167-1174.
- [5] H.J. Park, K.Lee, S.Park, B. Ahn, J.C.Lee, H.Y. Cho, K.I. Lee. *Bioorg. Med. Chem. Lett.*, **2005**, 15, 3307-3312.
- [6] I.Bouabdallah, L.A M'barek, A. Zyad, A. Ramadan, I. Zidane, A.Melhaoui, *Nat. Prod. Res.*, 2006, 20, 1024-1030.
- [7] I. Yildirim, N. Ozdemir, Y.Akçamur, M. Dinçer, O.Andaç, Acta Cryst., 2005, E61, 256-258.
- [8] D.M. Bailey, P.E. Hansen, A.G. Hlavac, E.R. Baizman, J.Pearl, A.F. Defelice, M.E Feigenson, *J. Med. Chem.*, **1985**, 28, 256-260.
- [9] C.K. Chu, J.Cutler, J. Heterocycl. Chem., 1986, 23, 289-319.
- [10] Amr AEI GES, N. A. Abdel-Latif and M. M. Abdlla, Acta Pharm, 2006, 56, 1203.
- [11] S. Chimichi, M.Boccalini, M.M.M. Hassan, G.Viola, Dall' Acqua F & M.Curini, Tetrahedron 2006, 62, 90.
- [12] T.A. Henry, *The Plant Alkoloids*, Anmol Publicaion Pvt. Ltd., **1999**.
- [13] Kobayashi, Hisafumi, Kato, Motto; Nitani, Fumio, Chem, Abstr 1989, 106 297008/g.
- [14] A. Nugent Richard, Marphy Meghan et. al., J. Med. Chem. 1993, 36 (1) 134.
- [15] M.A. Hantoon, Minnesota *Medicine*, **2001**, 84, 102.
- [16] X. Zhang, Li X., G.F. Allan and T. Sbriscia, J. Med. Chem. 2007, 50 (16), 3857.
- [17] N.M. Abunada, H.M. Hasaneen, N.G. Kandile, O.A. Miqdad, Molecules, 2008, 13, 1501.
- [18] S. D. Nimbalkar, Evaluation of various pyrazoles, IJRITCC, vol.-3, no.-5,pp.-230-236, May 2015.