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Abstract- The aspect of this paper entitled “Dynamics of 3-DOF R-R-R Type Manipulator Arm” is to give the brief 

idea about the Dynamics is important for mechanical design, control, and simulation of the Manipulator Arm. 

Initially study has been done on the industrial robots, their applications, and the problems associated with the current 

robotic arms, and the work has been carried out on the solution of the problem. Literature Study has given ideas in 

the field of Mechanical design and Dynamics of linkages. 3-DOF non planer R-R-R type of manipulator is chosen for 

Mechanical design and Dynamics analysis. For structural design The dynamic equations of motion provide the 

relationships between actuation and contact forces acting on robot mechanisms, and the acceleration and motion 

trajectories that result. 

 

Key words- robot, link mechanism, light weight, low cost, Deflection 

 
“I. INTRODUCTION” 

 

One of the primary objectives of robotics engineering is to design a manipulator capable of high link accelerations 

without sacrificing positional accuracy. Concern of current robotic research has been to develop anthropomorphic 

(human-like) arms capable of emulating the dexterity, manipulability, and workspace volume and payload-to-weight ratio 

of a human arm. The advent of composite materials, with very high stiffness-to-weight and strength-to-weight ratios as 

well as excellent damping properties, have made it possible for robotics engineers to build manipulators with excellent 

stiffness, strength, damping and low inertia. 

 

1.1 Dynamics 

 

Dynamics is important for mechanical design, control, and simulation. Inverse dynamics used in feed-forward control 

(required torques and forces computed).forward dynamics used for simulation. it determined joint acceleration based on 

torques and forces are specified .the joint-space inertia matrix is used in analysis in feedback control to line arise the 

dynamics and integral part of many forward dynamics formulation .and the operational-space inertia matrix used in 

control at the task at end effectors. 

Dynamics provides the relationships between actuation and contact forces, and the acceleration and motion trajectories 

that result. The dynamic equations of motion provide the basis for a number of computational algorithms that are useful 

in mechanical design, control, and simulation. 

 

1.1.1 Problems Associated with Current Robotic Arms 

 

Most current robotic arms possess poor payload-to-weight ratios, poor damping and lack anthropomorphic manipulability 

and dexterity. Conventionally, to design a fast-moving arm required that the links have low inertia. Inevitably, this 

resulted in large end-effectors vibrations and long settling times. Conversely, to achieve high Positional accuracy 

required bulky, massive links. Due to the large inertia of the links, these robotic arms cannot move rapidly and require 

inordinate amounts of power. However, robot researchers the world over have already begun to offer many design 

solutions to these problems. To achieve the manipulability and dexterity of a human arm, innovative new joint 

mechanisms have been studied. 
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1.2 Design of the Manipulator Arm: 

 

 
Figure1: Manipulator Arm Structure (Front View) 

Consider a manipulator arm is the cantilever type of structure with payload to weight ratio 1:1with maximum deflection 1 

CM. In fig.1 the structure is fixed at point A which will be attached to the robot base structure. Section AB is the hollow 

circular section of 3 mm thickness, which will be used to join the robot arm structure to the robot base structure. Section 

CD is the main arm structure which is hollow circular in cross section with 3 mm of thickness. Section EF is the hollow 

circular section of 3 mm thickness which will be used to fix the motor and the gripper mechanism. Further gripper will be 

attached to the section EF. 

 

1.2.1 Generalized Forces: 

 

The generalized force Q 1 is defined as :
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where Fj is the force at point j and rj is the position 

vector of point j. The index i correspond to Generalized coordinates. 

 

1.2.2 Equations of Motions: 

 

The equations of motion of a robot mechanism are usually presented in one of two Canonical forms:  

the joint-space formulation,    )(),()( gCI  or  

the operational-space formulation,       fxvxvx    ,
 

where f= the net force acting on a rigid body and is given by f = Ia + v Iv  where α = acceleration, v = velocity, These 

equations show the functional dependencies explicitly: I is a function of θ, Λ is a function of x, and so on. x is a vector of 

operational-space coordinates, while v and f are spatial vectors denoting the velocity of the end-effectors and the external 

force acting on it. If the robot is redundant, then the coefficients of this equation must be defined as functions of θ and 
 rather than x and v. 

 

1.3 Lagrange Formulation: 

 

The two methods that are most commonly used in robotics are the Newton–Euler formulation and the Lagrange 

formulation. The former works directly with Newton’s and Euler’s equations for a rigid body, which are contained within 

the spatial equation of motion,. This formulation is especially enabled to the development of efficient recursive 

algorithms for dynamics computations. 

The Lagrange formulation proceeds via the Lagrangian of the robot mechanism, 

L = K.E – P.E                                                                                       

where K.E and P.E are the total kinetic and potential energy, respectively, of the mechanism. 

The kinetic energy is given by     ][)(
2

1
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T The dynamic equations of motion can then be developed using 

Lagrange’s equation for each generalized coordinate: Torque 
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The resulting equation can be written in scalar form:
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1.3.1 Lagrange-Euler Dynamic Model Algorithm for the Closed-Form Equation of Motion: 

 

This algorithm carries out the complete dynamic formulation of an n-DOF manipulator that satisfies the condition for 

existence of closed-form geometric solutions. The various steps are 

Step 1 Assign frames {0},....,{n}using DH notation such that frame {i} is oriented (aligned) with principle axis of link i. 

 

Step 2 Obtain the link transformation matrix 1i

iT  for each link and from these compute product matrices 0

3

0

2 ,TT  and 

so on, which are required for computing the coefficients dij and its   derivatives, using equation 
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Step 3 Define partial derivative velocity matrix Qi for each link, depending on weather the joint  is revolute or prismatic. 

 

Step 4 For each link i determine the inertia tensor Ii with respect to frame {i} 

Step 5 Compute dij for i, j = 1, 2, .......n using equation      d


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Step 6 Compute the inertia coefficients Mij for i, j = 1, 2,.n using equation M ][
),max(

T
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Step 7 Compute the velocity coupling coefficients hijk for i, j, k = 1, 2, ....., n using equation 
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Step 8 Compute gravity loading terms Gi for each link, i = 1, 2, ...., n using equation 
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Step 9 To formulate the i
th

 equation for torque τu , substitute all the coefficients in equation 
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1.3.2 Dynamic Analysis Formulation for 3–DOF 4 Link RRR Type Manipulator Arm using Lagrange – Euler 

Approach: 

 

 
 

Fig1.1 Frame assignment for 3-DOF 4-Link RRR Type Manipulator Arm 

 

The manipulator is show in the Fig. based on assumptions that all the four links, Link 1,Link 2, link 3, and Link 4 are 

cylindrical with mass m 1 , m2 , m3, m4 respectively at their distal end, and Link 4 is rigidly connected with link 3.The 

Lagrange-Euler formulation is carried out to obtain the EOM as per Algorithm.The frames assignment is shown in Fig. 1 

and Table 1 gives the joint link parameters. 

 

i 
i  id  ia  i  C i  S  C i  S i  

1 
1  1L  0 -90 

1C
 1S  0 -1 

2 
2 -90 2L  0 -90 

2S  2C  0 -1 

3 
3  3L  0 0 

3C  3S  1 0 

4 0 0 
4L  0 1 0 1 0 

Table 1 Joint link parameters for 3-DOF 4-Link RRR Type Manipulator Arm 
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The link Transformation matrices and the overall transformation matrix are: 
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Since all the four joints 1,2,3 and 4 are revolute joints. the velocity matrix is  

 

Q1=Q2=Q3=Q4=  
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   The coefficient d ij for I, j =1,2,3,4  

d ij = 











ijfor

ijforTQT j

ujj

0

10

1  which gives d 11 , d 12 , d 13 , d 14 , d 21 , d 22 , d 23 , d 24 , d 31 , d 32 , d 33 , d 34 , d 41 , d 42 , d 43  and 
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The elements of inertia matrix M are computed  

 

Mij =  
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Thus, the Acceleration-Related Symmetric matrix   M(Ө),will be 
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Substitute the values of the elements  
131211 ,, MMM  to derive the Acceleration-Related Symmetric matrix   M(Ө). The 

Coriolis and centrifugal force 

coefficient h ijk for I, j, k =1, 2, 3, 4 are computed  
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The Coriolis and centrifugal torque terms are computed using the series summation: 

H i = 




kjijk qqh
       for  i,j,k = 1,2,3,4 

Substituting the values of I, j, k in the above equation and simplifying gives 

H 1 = 2h 114
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41 + 2h 124
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42 +2h 134
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H 2 = 2h 214
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       H 3 = 0     H 4 = 0                                                                                    

The mass of the links is at the distal end of the links {1} , {2}, {3}, {4}.Thus, 

r
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r
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r
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=  TL 100 4  

And the gravity is in the –ve direction of Z-axis of frame {0}, that is , g =  000 g  

Where g = 9.0892 m/s
2

. Therefore the gravity loading G 1  at the joint 1 is , 
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Similarly gravity loading at the joint 2,3, and 4 is  G 2  ,G 3 and G 4 respectively, 
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 4G  3244 SgCLm
 

 

The gravity term matrix G 1  will be equal to 

 G i  TGGGG 4321
 

Value of the term G 1 ,
 G 2  ,G 3 and G 4  can be substituted in the above equation to find the gravity matrix term, 

Thus,G i  








































3244

3244

3244324233222

4

3

2

1

))((2

0

SgCLm

SgCLm

CSgLLLgCmgCLmgCLm

G

G

G

G

 
Hence vector matrix form are obtained  

 

 

 

 

 

 

 

Thus substituting the values the equation of motion in the vector matrix form will be, 
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Due to the rigid joint between link 3 and 4, the value of the torque for link3, And link 4 are derived as equal in 

magnitude. 

Power = Torque   

Angular velocity =   

Power=   332211332211 
 

 

1.4 Closure 

 

Study of basic knowledge of dynamics was carried out. The necessary equations of motions were studied to gain the 

knowledge necessary for deriving the equations for dynamic analysis. Some of the important algorithms are summarized. 

The advantages of Lagrange approach is stated which motivated me to work with Lagrange Euler approach. This 

approach is used to formulate the torque equation for lifting a given load for a given angle. 
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