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Abstract — In this paper we examine the velocity and heat transfer in a boundary layer flow with thermal radiation past 

a moving vertical porous plate. The nonlinear unsteady momentum and energy equations associated with the flow and 

heat transfer are transformed from partial differential equations into ordinary differential equations by using similarity 

transformation. The resulting ordinary differential equation is solved numerically using B-Spine Collocation Method. 

The results are presented as velocity, temperature, Local wall shear stress and wall heat transfer rate profiles various 

values of parameter involving in the problem. 
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I. INTRODUCTION 

 

The study of the flow and heat transfer in fluid past a porous surface has attracted the interest of many scientific 

investigators in view of its applications in engineering practice, particularly in chemical industries; such as the cases of 

boundary layer control, transpiration cooling and gaseous diffusion. 

 

Hayat et al. [5] investigated the hydro magnetic oscillatory flow of a fluid bounded by a porous plate when the entire 

system rotates about axis normal to the plate. And the result showed that the flow field is appreciably influenced by the 

material parameter of the second grade fluid, applied magnetic field, the imposed frequency, rotation, suction and 

blowing parameters. 

 
Terrill [11] examined slow laminar flow in a converging or diverging channel with suction at one wall and blowing at the 

other wall. He considered the symmetric problem where the rate of fluid injection at one wall is equal the rate of fluid 

suction at the other wall. 

 

Sivasankaran et al. [10] investigated the natural convection heat and mass transfer fluid past an inclined semi – infinite 

porous surface with heat generation using Lie group analysis. Their result revealed that the velocity and temperature of 

the fluid increases with the heat generation parameter. And also, the velocity of the fluid increases with the porosity 

parameter and temperature and concentration decreases with increase in the porosity parameter. 

 

Ibrahim et al. [8] investigated the method of similarity reduction for problems of radiative and magnetic field effect on 

free convection and mass transfer flow past a semi-infinite flat plate. They obtained new similarity reductions and found 

an analytical solution for the uniform magnetic field by using lie group method. They also presented the numerical results 
for the non-uniform magnetic field. 

 

Yurusoy and Pakdemirli [14] examine the exact solution of boundary layer equations of a non-Newtonian fluid over a 

stretching sheet by the method of lie group analysis and they found that the boundary layer thickness increases when the 

non-Newtonian behavior increases. They also compared the results with that of Newtonian fluid. Makinde [9] examined 

the free convection flow with thermal radiation and mass transfer past a moving vertical porous plate. The plate is 

maintained at a uniform temperature with uniform species concentration and the fluid is considered to be gray, absorbing 

– emitting. The coupled non-linear momentum, energy and concentration equation governing the problem is obtained and 

made similar by introducing a time dependent length scale. The similarity equations are then solved numerically by using 

superposition method. 

 
Chung [3] examined the nonlinear stability of steady flow and temperature distribution of a Newtonian fluid in a channel 

heated from below and the viscosity is a function of temperature. 

 

Howell et al. [7] examined momentum and heat transfer on a continuously moving surface in a power law fluid .They 

examined the momentum and heat transfer occurring in the laminar boundary layer on a continuously moving and 

stretching two dimensional surface in non-Newtonian fluid. Their results in clued situation when then velocity is 

nonlinear and when the surface is stretched linearly. 
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Hassanien et al. [6] investigated the flow and heat transfer in a power law fluid over a non-isothermal stretching sheet. 

They presented a boundary layer analysis for the problem of flow and heat transfer from a power law fluid to a 

continuous stretching sheet with variable wall temperature. They performed parametric studies to investigate the effect of 
non-Newtonian flow index, generalized Prandtl number, power law surface temperature and surface mass transfer. Their 

result showed that friction factor and heat transfer depend strongly on the flow parameter. 

 

Hassanien [6] examined the problem of a non-Newtonian viscoelastic fluid obeying the Walter’s model with heat transfer 

over a continuous surface in parallel over a continuous surface in parallel stream using finite difference method. 

 

Hassanien and Gorla [6] investigated the problem of the flow and heat transfer in a non-Newtonian fluid with micro – 

rotation past a stretching porous sheet. 

 
Badr and Ahmed [1] investigated the numerical simulation of steady and unsteady mixed convection from tubes of 

elliptic cross-section. The problem of two-dimensional laminar mixed convection (forced and free convection) from a 

tube of elliptic cross-section was numerically simulated for the cases when the approaching flow is either steady or 

fluctuating. The elliptic cross-section is flexible enough to simulate the circular tube or to approach the flat plate 

depending on the ratio between its minor and major axes. The numerical scheme is developed in a way to cover the 

special cases of steady and unsteady flows, parallel and counter flows, forced convection as well as mixed convection 

flows. The tube is assumed to have an isothermal surface and is placed in an unsteady but uniform stream. The free -

stream fluctuations are represented by periodic (sinusoidal) fluctuations superimposed on the average stream velocity. 

The resulting velocity and thermal fields are obtained by solving the conservation equations of mass, momentum and 
energy. The main parameters involved are the tube axis ratio, Reynolds number, Grashof number, Prandtl number, 

frequency parameter and the relative amplitude of fluctuations. Results will be presented for some steady flow cases 

covering the parallel, cross and counter flow configurations as well as the fluctuating flow cases with emphasis on the 

effects of the amplitude and frequency of free-stream fluctuations on the local and average Nusselt numbers. The study 

revealed that the effect of fluctuations on the time-average Nusselt number becomes more pronounced with increasing 

Reynolds number. It also revealed that the rate of heat transfer increases with the increase of the amplitude of 

fluctuations but decreases with the increase of frequency. The details of flow and thermal fields were presented in the 

form of local and average Nusselt number variations as well as streamline and temperature contours for some selected 

cases. This paper present the B-Spline Collocation solution of the velocity and heat transfer in a boundary layer flow with 

thermal radiation past a moving vertical porous plate. The method is based on the search for a solution in the form of a 

rapid convergent series. 
 

II. MATHEMATICAL FORMULATIONS 

 

Consider an unsteady flow of an incompressible fluid with thermal radiation past a moving vertical plate. Let the x- axis 

be taken along the plate in the vertically upwards direction and the y′ – axis be taken normal to it. Let u and v be the 

velocity components along the x and y′ the directions respectively. The physical variables are functions y′ and t only. 

Hence, the appropriate governing equations are as follows: 
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and the radiative heat flux term is simplified by making use of the Roseland approximation as in equation (1) 
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where, α = thermal diffusivity, k = thermal conductivity, σ = Stefan – Boltzmann constant, K = Absorption Coefficient, ν 

= Kinematics viscosity, u,v = Velocity component, qr = Radiative heat flux, β = Volumetric expansion coefficient = 

Temperature, G = Gravitational acceleration, t = Time, U 0 = Wall velocity, Tw = Wall Temperature, T  = Ambient 

temperature, c = Suction parameter, R = Radiation parameter, Gr = Local Grashof number, Pr = Prandtl number. 
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The appropriate boundary conditions are: 

 
'

0

'

,     T=T             0

0,       T=T           as   

wu U at y

u y

 

 
           }                                 (5)  

 

III. METHOD OF SOLUTION 

 

We define similarity variables 
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By Taylor series expansion of
4T  and neglecting terms with higher powers, we have  
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Using equations (6) and (7) in equations (2) to (4) we obtain, 
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Local wall shear stress, 
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and  

Local surface heat flux
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IV. B-SPLINE COLLOCATION METHOD 

 

Let
n

iit 0}{   be a strictly increasing sequence of point such that nttta  ........10 . Consider that f(t) is a 

continuous function over an interval [a,b]. A polynomial spline s(t) of degree m is an interpolant to f(t), such that 
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 (ii) nitfts ii ,......,2,1,0                      ),()(   

 (iii) ],[)( 1 bats m  

Prenter (1975) defined the cubic spline s(t) as 

 
1

1

( )
n

j j

j

s t a B t





                                                                     (15) 



International Journal of Advance Research in Engineering, Science & Technology (IJAREST) 
Volume 3, Issue 6, June 2016, e-ISSN: 2393-9877, print-ISSN: 2394-2444 

 

All Rights Reserved, @IJAREST-2016 
16 

Where n is the number of subintervals of [a,b], 101 ,........,,  naaa  are (n+3) unknowns and the functions )(tBi  , with 

additional  knots 012 ttt    and nnn ttt   12 is defined by, 

   

     

     

   
































               ;0   

,  ;

,  ;33)(3

,  ;33)(3

,         ;

1
)(

21

3

2

1

3

1

2

11

23

1

3

1

2

11

23

12

3

2

3

otherwise

tttiftt

tttiftttthtthh

tttiftttthtthh

tttiftt

h
tB

iii

iiiii

iiiii

iii

i
 

















2    2          ;0   

1    1          ;1    

1         ;4    

)(

iorijif

iorijif

jif

tB ji  

And   0tBi  for 2 itt and 2 itt . 

Here  tBi is denoted as cubic B-spline with knots at 2112 ....   nnn ttttt . From equation (15) it is clear 

that s (t) is a basis of B-splines at different knots. 

 

Let us consider a general two point boundary value problem of second order is as given below,                                    (16) 
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Approximating the solution ( )t  to the equation (9). Where ( )jB t  be cubic B-Spline defined as in Table-1 and 

, 1,0,......., 1ja j n   are the unknowns to be determined. Substituting  t in the equation (9) and (10) we obtain 
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Evaluating  jB t  and its derivative at the knots of our partition using Table-1by Dr.D.C.Joshi [4], substituting into the 
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process. 

 

Table: 1 Values of cubic B-Spines at notes 

 

 

 

 

 
 

 

 

 

The result is presented graphically in figures 1 to 6. 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 1: Temperature profiles, c=1, Gr=10,     Figure 2: Temperature profiles, R=1, Gr=10, 

Pr=0.71, ______R=0.1, ooooooo R=1.0,      Pr=0.71, ______c=0.1, ooooooo c=1.0, 

+++++++ R=3.0                                                              +++++++ c=3.0 

 

 

 
 

 

 

  
 

 

 

 

 

 

Figure 3: Velocity profiles, c=1, Gr=10,                   Figure 5: Wall shear stress, Gr=10 

Pr=0.71, ______R=0.1, ooooooo R=1.0,                         Pr=0.71, ______c=0.1, ooooooo c=0.5, 

+++++++ R=3.0                                                               +++++++ c=1.0 

 

 

 

 

 

     

 

 

 

 

 

 

Figure 4: Velocity profiles, R=1, Gr=10,                   Figure 6: Wall shear stress, Gr=10, 

              Pr=0.71, ______c=0.1, ooooooo c=0.5,                           Pr=0.71, ______c=0.1, ooooooo c=0.5, 

              +++++++ c=1.0                                                                +++++++c=1.0 
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V. DISCUSSIONS OF RESULTS 

 

The result is presented as temperature, velocity, wall shear stress and wall heat transfer rate profiles in figures 1 to 6. And 

the results show that: 

 

The fluid temperature is maximum at the plate and decreases as the fluid is moving away from the plate. Increase in the 

radiation heat absorption causes increases in the fluid temperature. And the fluid temperature decrease with an increase in 

fluid suction at the plate. 
 

The fluid velocity reaches its maximum value at short distance from the plate and decreases to zero value away from the 

plate. An increase in the fluid velocity is observed with an increase in the radiative heat absorption. And the fluid 

velocity decreases with increase in the fluid suction at the plate. 

 

Generally, the skin friction increases with decrease radiative heat absorption but decrease with increases in the fluid 

suction at the plate. Thus, suction reduces skin friction at the plate. The rate of heat transfer at the plate decreases with an 

increase in the radiative heat absorption but decreases with an increase in fluid suction at the plate. 
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