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Abstract — Finite field arithmetic logic is central in the implementation Of Reed-Solomon codes and in some
cryptographic algorithms. There is a need for good multiplication and inversion algorithms that can be easily realized
on VLSI chips. This paper presents a novel sequential Type-1 optimal normal basis multiplier in GF(2™) with a
regular structure. The proposed multiplier is highly regular, modular, expandable and well-suited to VLSI
implementation. A new normal basis inverter based on the proposed multiplier is also presented. The proposed
inverter provides better time-area complexity than existing inverters as with large m.
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l. INTRODUCTION

Arithmetic over finite fields GF(2™) has recently found many significant applications, including error correcting codes
[1], cryptography [2], digital signal processing [3,4], switching theory [5] and pseudorandom number generation [6].
Addition, multiplication, exponentiation and inversion are the most important computations in finite field arithmetic.
Addition can be easily implemented as XOR of the corresponding vectors. Multiplication typically requires more
computational time than addition, and has more circuit complexity. Other important arithmetic operations, such as
exponentiation, division, and multiplicative inversion, can be conducted by repeatedly applying the multiplication
squaring algorithm. The finite field GF(2™) is a number system containing 2™ elements. Its attractiveness in practical
applications stems from the fact that each element can be represented by m binary digits. The practical application of
error-correcting codes makes considerable use of computation in GF(2™).Recent advances in secret communication, such
as encryption and decryption of digital messages, also require the use of computation in GF(2™) [4]. Hence, there is a
need for good algorithms for doing multiplication and inversion in finite field. Different basis representations of field
elements can be specified to simplify the implementation of arithmetic operations. Three major bases are standard,
normal and dual basis. The standard basis multipliers [7] are extensively adopted, and result in efficient implementations
of multipliers. As compared to the other two bases multipliers, the standard basis multipliers have a low design
complexity, and their sizes are easier to extend to meet various applications owing to their simplicity, regularity and
architectural modularity. The dual basis multipliers [8] require smaller chip areas than other two types. The major benefit
of the normal basis multipliers [9] is that the squaring of an element is derived by cyclically shifting the binary
representation. Thus, the normal basis multipliers are very effective for performing inverse, squaring and exponentiation
operations However, the normal basis multipliers require basis conversion, since the field elements of GF(2™) are
represented using the standard basis. Massey and Omura formed the first normal basis multiplication algorithm [9]. The
major flaws in the multiplier proposed by Massey Omura are its irregularity and lack of modularity, which mean that it
cannot easily be extended .To eradicate this problem, this paper presents a novel sequential semi-systolic Type-1 optimal
normal basis multiplier with a space complexity of O(m) and features that are valuable for high-speed VLSI system
design, such as regularity and modularity. The sequential multiplier iteratively determines the product of two elements
with m bits in parallel. The products are accumulated after m clock cycles. A new normal basis inverter based on the new
normal basis multiplier is also developed.

1. NORMAL BASIS REPRESENTATION

It is well known that there always exists a normal basis in the finite field GF(2™) for all positive integers m. For an o €
GF2M{ a, o?, o, ..., «® ™V }is called a normal basis of GF(2™) over GF(2) if a, o , o , ..., and o> ™" are linearly
independent. A normal basis always exists in the finite field GF(2™) for all positive integers m. Each element A €GF(2™)
can be uniquely expressed as

zm—l

_ lD 2] 22
T . L oSO (@))]

m-1
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where a; €{0,1} for i = 0, 1, 2, ..., m -1. If for all 0 < il, i2 < m - 1 and il # i2, there exist j1, j2 such that

A7 = A7 the basis is called optimal. Two commonly employed Optimal Normal Bases (ONB) are
defined as follows:
(1) Type-1 ONB: m+1isa prime p, and 2 is primitive modulo p.
(2) Type-1l ONB: 2m+1 is a prime p and either
(@) 2 is primitive modulo p, or
(b) p =3 (mod 4) and the multiplicative order of 2 modulo p is m.
In this paper Type-1 ONB is used t perform the multiplication and inversion.

. THE PROPOSED NORMAL BASIS MULTIPLIER

Let Aand B denote any two elements in GF(2™), written as

20 ZI 22 2m—|
A=a0” +a0° +a,0° +..+a, 0° ,and
ZIV ZI 2: zm'l
B=ba" +ho” +ba” +..+5, a )

m

The product C of A and B is as follows:
CoARB ettt et et oAt ettt b et bbb eR bt h b et etk eA e bbb ehbae e Aeb ettt eb et et ebeneees bt reres (3)

The major advantage of the normal basis representation is that an element in GF(2™) is squared with a simple cyclic shift.
However, multiplication in this basis appears to be more complex than in the other bases. Hence, normal basis
multiplication requires basis conversion, to perform the multiplication in another basis. The normal basis N is expressed
as.

2 -1
N ={o,0?, 0% ,..,0% } @)

Let the generating polynomial G(X) be an irreducible All-One-Polynomial [12] of degree m, where m+1 is relative prime
to 2, and G(X) is represented as

GQUY ST X X b X e e (5)
If a denotes the root of the G(X), then it has the following property

a™=1

then the normal basis N can easily be converted to the following shifted standard basis N’:

R G O (6)

Permutation P performs the following transformations for both A and B:

A_ 2(1 2| 22 2m~1
=q0” +a0” +a,0" +..+a, o

=aqo' +a,0’ +a,o’ +..+a,a”,

20 1

1 2 -
B=ba’ +bo’ +ba” +..+b, o’

SBO B0 D00 H oA B Q"L e e et e @)
Where
Fori=0,1,2.......m-1and j=1,2,3,........ m
a’j=4a;
b'j: bi

and j=2' mod(m+1)

Assuming that two elements A and B are represented by the shifted standard basis, the product C of A and B is calculated
as
C=A4*B

=(aa+a,a’ +a,0’ +..+a,0")*B

=aaB+a,0’B+a,0’B+...+a,0"B ®)

Each term in the equation (8) can be calculated as

(@)
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a,oB
= ao(ba+b,o” + by’ +...+b,a™)
=a,(bo’ + b’ +bat +...+b,a")

=a, (b, +bo® +b,a’ +ba* +...+ b,

m m—

Iam )7

a,0’B
= a,a(a.B)
=a,o(b, +bo’ +b,o’ +bot +...+b, ")

=a,(b,o+bo’ +bot +b0° +..+5, 0"")

=a,(b, , +b,a+ba’ +ba’+ba’ +..+b, ,a™),

m-1 m

a,o’B
' 2

= a,a(a’B)

=ao(b, , +b,a+bo’ +bat +b0’ +..+b, o)
=a,(b, o +b,a’ +hat +ba’ +b0o’ +..+b, ,0"")

=a,(b, , +b, a+b,a’ +bho' +ba’ +b,0’ +..+b, ")

m-1 m

Therefore, the term a;o' B fori= 1,2, 3,..., mis computed as
ao'B
= afoc((x"lB)

=ao(b, ., +b ,.0+b . o’ +..+b o> +ba +ba!

m—i+2

+...+b,',, ™)

2 4 3 2 i-1
- a( m— I+1 m 1+2a+b 3(x’ +bm—i+4a +"'+bma’

m—i+

S X O N 9)

By summing up the corresponding terms in the above equation for 1 <i<m, and one extra term, each term of the product
C is calculated using
=(ayb, + ab, + a,b,

m-1

+ab, ,+..+a,b) mod 2,

(a0b+a,b +ab, +ab,  +..+a,b) mod 2,

m-1

=(a,b, + ab + a,b, + a,h, +...+a,b,) mod 2,

;= (ab, +ab, +ab +ab, +ab, +ab,  +..+a,b,) mod 2,

m-1

(aO m- l+albm 2+a2b te +am lb +ambm 1) mOd 2’
( b +ab

m-1

+ah,

m-2

+otd

m-1

b +a,b,) mod 2 (10)

The final result C = A* B is given by

20 2] 22 2m-l
C=g0 +e¢a" +6a +..+¢, .0
Figure 1 illustrates the hardware implementation of the proposed algorithm. Permutations P1 and P2 belong to
permutation P, and permutation P3 belongs to the inverse permutation P-1. The functions of P1, P2 and P3, each with m
inputs and m outputs are defined by
Permutations p1 and p2 with inputs I;and outputs O;
Oi=|;
=2 mod(m+1) fori=1,23....mandj=01,2,...,m-1

Inputs for pl are given as
l;=b; where,0<i<m-1

All Rights Reserved, @IJAREST-2016 06



International Journal of Advance Research in Engineering, Science & Technology (IJAREST)
Volume 3, Issue 4, April 2016, e-ISSN: 2393-9877, print-ISSN: 2394-2444

Outputs for P1 are given by
b= O; where, 1 <i<m
apply by = 0 and by directly to flip flop Dy

Inputs for P2 are given as
l;=a; where, 0 <1<m-1

Outputs from P2 are given as
a; = 0O; where, 1 <i<m-1
apply ap= 0 and ap directly in to sg

Inverse permutation p3 with inputs I; and outputs O;
Oj :_ Ii
j = 2'mod(m+1)

The final result C is obtained through permutation P3. The proposed normal basis multiplier needs m+1 2-input AND

gates, 2m+1 2-input XOR gates and 3m+3 1-bit flip-flops. The proposed sequential normal basis multiplier is regular and
expandable, and is therefore naturally suited to VLSI implementation.

m ‘l'“" (XX

eee U, p U, » U,

Yieee vy

I& I, 0
P3 |

*om_l coo *ol *00

Cia1 (XX ) C, Cy
Figure 1. The proposed normal basis multiplier in GF(2™).

V. THE PROPOSED NORMAL BASIS MULTIPLICATIVE INVERTER

Multiplicative inversion is highly complex and most studied finite field arithmetic operation. A novel multiplicative
inversion is developed based on the proposed normal basis multiplier.

From Fermat’s theorem, for every B € GF(2™), B =B yielding
B
- BE”'—E
_ Bz+2:+2-‘—...—2"‘"
= B*B*B* .. B*"

-1

=B (B*)*(B*)’)..((.((B)*)')*..)°

Figure 3 shows the hardware implementation based on Eq. (12). The shift register T, which comprises m flip-flops,
m—1

responds to the squaring computation of B?, ~(F)----and (.(B)"--" permytations P1 and P2 belong to

permutation P and P, respectively. The proposed algorithm for multiplicative inverse is decribed below.
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Algorithm:
/*computing B™ */

Step 1: Initialization
(1) Reset all 1-bit latches in cells U; for 0 <i < m to Os.
(2) Load operand B into shift register T.

Step 2: Deriving B?

(1) Shift T to left by one bit.

(2) Dy =0, load D with T through permutation P1.
(3) Do not shift D.

4 S =1

(5) Load final B? into shift register S.

(6)So=0

Step 3: Squaring and multiplication

(1) Shift T to left by one bit.

(2) Dy = 0; load D with T through permutation P1.

(3) Shift D and S one bit for each clock cycle. After m+1 clock cycles, obtain D*S and store it in S.

Step 4: Repeat Step 3 m-3 times. Determine the final result of B-1 from the output of permutation P2.

eee
Ln eee L, I,
| P2 |
¢ Ot e eoe ¢Ol ¢Oo
C C, Co

1 eeoe
Figure 2. The proposed normal basis multiplicative inverter in GF(2™).

The proposed inverter is regular and modular, making it very attractive for VLSI implementation. The proposed inverter
provides better time-area complexity for the larger value of m.

IV. RESULTS

In this paper, a normal basis multiplier and a multiplicative inverter is implemented using VERILOG coding technique.
For simulation, synthesis and timing analysis Xilinx 14.5 is used. The experiment results are divided into following parts
which are simulation results as waveform, RTL schematic, utilization of resources , area in terms of LUTs & delay.
Steps for simulation in any coding is development of the algorithm to be coded..Once the algorithm is ready, coding is
started and different modules are developed. These modules are independently checked for errors and later they are
assembled to form the exact code. The whole code is also checked for errors and logic is checked by simulating the code.
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Figure 3. Symbol of normal basis multiplier.
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Figure 4. Symbol of normal basis multiplicative inverse.
A. Simulation Results

Simulation is done on Xilinx ISE Simulator. Here 8 bit inputs are used by giving any values for 8 bit input the outputs
for both the multiplication and inversion can be obtained after certain clock cycles.
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Figure 5. Waveform of normal basis multiplier.
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Figure 6. Waveform of normal basis multiplicative inverse.
B. Utilization of Resources

In any design the utilization of resources is most important, it defines the utility of device. For the above LDPC design
utilization is as follows:

Table 1. Utilization of resources for normal basis multiplier

Logic Utilization Used Available
Number of Slice Registers 79 126800
Number of Slice LUT’s 77 63400
Number of fully used
LUT- FF pairs 63 93

Table 2. Utilization of resources for normal basis multiplicative inverse

Logic Utilization Used Available
Number of Slice Registers 110 126800
Number of Slice LUT’s 142 63400
Number of fully used
LUT- FF pairs 96 156

V. CONCLUSION

In this paper a novel sequential semi systolic Type-1 ONB normal basis multiplier is presented and it is implemented by
using verilog code in Xilinx. The proposed multiplier is regular, expandable and its easily realizable by using existing
VLSI technology. A new normal basis multiplicative inverter is developed which is based on the proposed multiplier.The
proposed inverter provides better time-area complexity than existing inverters for large values of m.
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