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Abstract – Finite field arithmetic logic is central in the implementation Of Reed-Solomon codes and in some 

cryptographic algorithms. There is a need for good multiplication and inversion algorithms that can be easily realized 

on VLSI chips. This paper  presents a novel sequential Type-I optimal normal basis multiplier in GF(2
m

) with a 

regular structure. The proposed multiplier is highly regular, modular, expandable and well-suited to VLSI 

implementation. A new normal basis inverter based on the proposed multiplier is also presented. The proposed 

inverter provides better time-area complexity than existing inverters as with large m. 

 

Keywords--- Cryptography, Finite Field, Multiplication, Normal Basis, Multiplicative Inverse, VLSI 

 

I. INTRODUCTION 
 

Arithmetic over finite fields GF(2m) has recently found many significant applications, including error correcting codes 

[1], cryptography [2], digital signal processing [3,4], switching theory [5] and pseudorandom number generation [6]. 

Addition, multiplication, exponentiation and inversion are the most important computations in finite field arithmetic. 

Addition can be easily implemented as XOR of the corresponding vectors. Multiplication typically requires more 

computational time than addition, and has more circuit complexity. Other important arithmetic operations, such as 
exponentiation, division, and multiplicative inversion, can be conducted by repeatedly applying the multiplication 

squaring algorithm. The finite field GF(2m) is a number system containing 2m elements. Its attractiveness in practical 

applications stems from the fact that each element can be represented by m binary digits. The practical application of 

error-correcting codes makes considerable use of computation in GF(2m).Recent advances in secret communication, such 

as encryption and decryption of digital messages, also require the use of computation in GF(2m) [4]. Hence, there is a 

need for good algorithms for doing multiplication and inversion in finite field. Different basis representations of field 

elements can be specified to simplify the implementation of arithmetic operations. Three major bases are standard, 

normal and dual basis. The standard basis multipliers [7] are extensively adopted, and result in efficient implementations 

of multipliers. As compared to the other two bases multipliers, the standard basis multipliers have a low design 

complexity, and their sizes are easier to extend to meet various applications owing to their simplicity, regularity and 

architectural modularity. The dual basis multipliers [8] require smaller chip areas than other two types. The major benefit 

of the normal basis multipliers [9] is that the squaring of an element is derived by cyclically shifting the binary 
representation. Thus, the normal basis multipliers are very effective for performing inverse, squaring and exponentiation 

operations However, the normal basis multipliers require basis conversion, since the field elements of GF(2m) are 

represented using the standard basis. Massey and Omura formed the first normal basis multiplication algorithm [9]. The 

major flaws in the multiplier proposed by Massey Omura are its irregularity and lack of modularity, which mean that it 

cannot easily be extended .To eradicate this problem, this paper presents a novel sequential semi-systolic Type-I optimal 

normal basis multiplier with a space complexity of O(m) and features that are valuable for high-speed VLSI system 

design, such as regularity and modularity. The sequential multiplier iteratively determines the product of two elements 

with m bits in parallel. The products are accumulated after m clock cycles. A new normal basis inverter based on the new 

normal basis multiplier is also developed. 

 

II. NORMAL BASIS REPRESENTATION 

 

It is well known that there always exists a normal basis in the finite field GF(2m) for all positive integers m. For an α € 

GF(2
m
),{ α, α

2
 , α

4
 , ..., α

2^(m-1)
 } is called a normal basis of GF(2

m
) over GF(2) if α, α

2
 , α

4
 , ..., and  α

2^(m-1)
 are linearly 

independent. A normal basis always exists in the finite field GF(2m) for all positive integers m. Each element A €GF(2m) 

can be uniquely expressed as  

...............................................................................................................................(1) 
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where ai €{0,1} for i = 0, 1, 2, …, m -1. If for all 0 ≤ i1, i2 ≤ m - 1 and i1 ≠ i2, there exist j1, j2 such that

  the basis is called optimal. Two commonly employed Optimal Normal Bases (ONBs) are 

defined as follows: 

(1) Type-I ONB: m+1 is a prime p, and 2 is primitive modulo p. 
       (2)  Type-II ONB: 2m+1 is a prime p and either 

           (a) 2 is primitive modulo p, or 

           (b) p ≡ 3 (mod 4) and the multiplicative order of 2 modulo p is m. 

In this paper Type-I ONB is used t perform the multiplication and inversion. 

 

III. THE PROPOSED NORMAL BASIS MULTIPLIER 

Let Aand B denote any two elements in GF(2m), written as                                                               

 

 ………………………………………………………………………………(2) 
 

The product C of A and B is as follows: 

C=A*B               ..................................................................................................................................................................(3) 

 

The major advantage of the normal basis representation is that an element in GF(2m) is squared with a simple cyclic shift. 

However, multiplication in this basis appears to be more complex than in the other bases. Hence, normal basis 
multiplication requires basis conversion, to perform the multiplication in another basis. The normal basis N is expressed 

as.  

………………………………………………………………………………………………..(4) 

Let the generating polynomial G(X) be an irreducible All-One-Polynomial [12] of degree m, where m+1 is relative prime 

to 2, and G(X) is represented as 
 

............................................................................................................................. ..................(5) 

If α denotes the root of the G(X), then it has the following property  

αm+1=1 

then the normal basis N can easily be converted to the following shifted standard basis N’: 

............................................................................................................................. .......................(6) 
Permutation P performs the following transformations for both A and B: 

 

............................................................................................................................. ....(7) 

Where 

For i=0,1,2.......,m-1 and j=1,2,3,........,m 

a,
j = ai 

b,
j = bi  

and  j=2i mod(m+1) 

 

Assuming that two elements A and B are represented by the shifted standard basis, the product C of A and B is calculated 

as 

........................................................................................................................ .(8) 

Each term in the equation (8) can be calculated as 

(a) 
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Therefore, the term ai α
i B for i = 1, 2, 3,…, m is computed as 

 

..........................................................................................(9) 
By summing up the corresponding terms in the above equation for 1 ≤ i ≤ m, and one extra term, each term of the product 

C is calculated using 

 

 

...........................................................................................(10) 
 

The final result C = A* B is given by 

...........................................................................................................(11) 
 

Figure 1 illustrates the hardware implementation of the proposed algorithm. Permutations P1 and P2 belong to 

permutation P, and permutation P3 belongs to the inverse permutation P-1. The functions of P1, P2 and P3, each with m 
inputs and m outputs are defined by 

Permutations p1 and p2 with inputs Ij and outputs Oi 

Oi = Ij 

I = 2
j
 mod(m+1) for i = 1,2,3......,m and j = 0,1,2,...... ,m-1 

 

Inputs for p1 are given as 

Ii = bi where,0 ≤ i ≤ m-1 
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Outputs for P1 are given by 

bi 
, = Oi  where, 1 ≤ i ≤ m 

apply b0
, = 0 and b0 directly to flip flop D0 

 

 Inputs for P2 are given as  

Ii = ai  where, 0 ≤ i ≤ m-1 

 

Outputs from P2 are given as 

ai
’ = Oi  where, 1 ≤ i ≤ m-1 

apply a0= 0 and a0 directly in to s0 

 

Inverse permutation p3 with inputs Ii and outputs Oj  

Oj  = Ii 

j = 2i mod(m+1) 

 

The final result C is obtained through permutation P3. The proposed normal basis multiplier needs m+1 2-input AND 

gates, 2m+1 2-input XOR gates and 3m+3 1-bit flip-flops.The proposed sequential normal basis multiplier is regular and 

expandable, and is therefore naturally suited to VLSI implementation. 

 

 
Figure 1. The proposed normal basis multiplier in GF(2

m
). 

IV. THE PROPOSED NORMAL BASIS MULTIPLICATIVE INVERTER 

Multiplicative inversion is highly complex and most studied finite field arithmetic operation. A novel multiplicative 

inversion is developed  based on the proposed normal basis multiplier.    

From Fermat’s theorem, for every B € GF(2m), = B yielding 

................................................................................................................(12) 

 

Figure 3 shows the hardware implementation based on Eq. (12). The shift register T, which comprises m flip-flops, 

responds to the squaring computation of B2, . Permutations P1 and P2 belong to 

permutation P and P-1, respectively. The proposed algorithm for multiplicative inverse is decribed below. 
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Algorithm: 

/*computing B-1 */ 

 

Step 1: Initialization 

(1) Reset all 1-bit latches in cells Ui for 0 ≤ i ≤ m to 0s. 

(2) Load operand B into shift register T. 

 

Step 2: Deriving B2 
(1) Shift T to left by one bit. 

(2) D0 = 0, load D with T through permutation P1. 

(3) Do not shift D. 

(4) S0 = 1 

(5) Load final B2 into shift register S. 

(6) S0 = 0 

 

Step 3: Squaring and multiplication 

(1) Shift T to left by one bit. 

(2) D0 = 0; load D with T through permutation P1. 

(3) Shift D and S one bit for each clock cycle. After m+1 clock cycles, obtain  D*S and store it in S. 
 

Step 4: Repeat Step 3 m-3 times. Determine the final result of B-1 from the output of permutation P2. 

 

 
Figure 2. The proposed normal basis multiplicative inverter in GF(2

m
). 

 
The proposed inverter is regular and modular, making it very attractive for VLSI implementation. The proposed inverter 

provides better time-area complexity for the larger value of m.   

 

IV.      RESULTS 

In this  paper, a normal basis multiplier and a multiplicative inverter is implemented using VERILOG coding technique. 

For simulation, synthesis and timing analysis Xilinx 14.5 is used. The experiment results are divided into following parts 

which are simulation results as waveform,  RTL schematic, utilization of resources , area in terms of LUTs & delay. 
Steps for simulation in any coding is development of the algorithm to be coded..Once the algorithm is ready, coding is 

started and different modules are developed. These modules are independently checked for errors and later they are 

assembled to form the exact code. The whole code is also checked for errors and logic is checked by simulating the code. 
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        Figure 3.  Symbol of normal basis multiplier. 

 

Figure 4.  Symbol of normal basis multiplicative inverse. 

A.        Simulation Results 

 

Simulation is done on  Xilinx ISE Simulator. Here 8 bit inputs are used by giving any values for 8 bit input the outputs 

for both the multiplication and inversion can be obtained after certain clock cycles.   
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 Figure 5.   Waveform  of normal basis multiplier. 

 
Figure 6.   Waveform  of normal basis multiplicative inverse. 

 

B.         Utilization of  Resources 

In any design the utilization of resources is most important, it defines the utility of device. For the above LDPC design 

utilization is as follows: 

 

Table 1.   Utilization of resources for normal basis multiplier  
  

 

          Logic Utilization     

 

                 Used 

 

               Available 

 

Number of Slice Registers   

 

                  79 

  

                 126800 

 

Number of  Slice LUT’s 

 

                   77 

 

                 63400 

Number of fully used   

LUT- FF pairs 

 

                   63 

  

                  93 

 

Table 2.   Utilization of resources for normal basis multiplicative inverse 
  

 

          Logic Utilization     

 

                 Used 

 

               Available 

 
Number of Slice Registers   

 
                   110 

  
                 126800 

 

Number of  Slice LUT’s 

 

                   142 

 

                 63400 

Number of fully used   

LUT- FF pairs 

 

                    96 

  

                  156 

 
 

V.        CONCLUSION 

 

In this paper a novel sequential semi systolic Type-I ONB normal basis multiplier is presented and it is implemented by 

using verilog code in Xilinx. The proposed multiplier is regular, expandable and its easily realizable by using existing 

VLSI technology. A new normal basis multiplicative inverter is developed which is based on the proposed multiplier.The 

proposed inverter provides better time-area complexity than existing inverters for large values of m. 
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