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Abstract: In the real world of designing field the different geometries are generated using the Computer Aided Design 

(CAD). And then after this geometries are analysed using different analytical methods like Finite Element Method 

(FEM), Finite Difference Method and other traditional methods. Among them Finite Element Method is more popular 

in recent time among the designers. But, FEM consumes more time in preparing the boundary of the element.  Hence, 

it consumes more time to get final results. In last decade, a new emerging technology named as Isogeometric Analysis 

has been developed by Hughes in 2005. As compared to FEM, the Isogeometric Analysis prepares the meshing 80% 

faster than FEM. So, from the literature, this study is concentrated on the comparison of Isogeometric Analysis with 

FEM.  In this research work, the main aim is to compare Isogeometric Analysis with Finite Element Analysis using 

Isogeometric tool. In this study, two models of Beam Curved in Plan have been analysed and results of Finite Element 

Analysis and Isogeometric Analysis using ABAQUS 6.14 software have been compared.  
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I. INTRODUCTION 

 In real word of designing the engineering problems includes analysis on products like aircraft, automobiles, boats, 

wind turbines and components of these products. The geometry of all these products are described using Computer Aided 

Design (CAD).  

 In the field of engineering a lot of time is waste on approximating this geometry for analysis purposes. Most of 

the analysis methods are uses piecewise linear or piecewise quadratic approximations of the boundary. Since such an 

approximation is not unique, engineers waste time going back and forth between these two definitions of the geometry. 
Traditionally, geometry has been represented differentially in the field of CAD and FEA. This means that the CAD 

geometry, which is exact, must be converted to an Analysis Suitable Geometry (ASG) for input into a FEA programme. In 

order to obtain an ASG, features like insert holes and another difficult boundaries are often omitted to avoid for making 

analysis easy and simple during analysis process. This process takes up to 80% analysis time and this is also known as 

„Meshing”.  

The difference between the fields of FEA and CAD on the subject of geometry representation is remarkable. This 

has mainly to do with the fact that they are seen as separate fields, which are interfaced using complicated and expensive 

mesh generation schemes. In order to avoid this problem, it is preferable to use an integrated approach where the CAD 

geometry is directly used in the FEA. Some attempts at this have been made in the recent years but among that the 

Isogeometric Analysis Method is very good and gives user interfaced results.  

To overcome this critical issues in FEA, an idea has been developed by Hughes et al. in 2005 that, In the analysis 

framework, it is employed the same function used to describe the geometry of the computational domain i.e. typically use 
B-Splines and/or Non–Uniform Rational B-Splines (NURBS). 

II. ISOGEOMETRIC ANALYSIS 

Isogeometric analysis was introduced in 2005 by Hughes et al. to get exact engineering geometry to Finite 

Element Analysis (FEA) and to mitigate the inconvenient process of meshing altogether.   

The key concept of IGA outlined by Hughes et al. in 2005 is, “To employ Non-Uniform Rational B-Splines 

(NURBS) not only as a geometry discretization technology but also a discretization tool for analysis”. The IGA concept 

merge the two fields of CAD and FEA by expanding the solution space using the same basis at that of the geometry 

description from CAD. Since, its introduction, IGA has successfully applied to a wide variety of problems in structural 

analysis, electromagnetics, turbulence, fluid structure interaction and higher order partial differential equations.  

There are several candidate technologies available to the IGA framework, of which NURBS is most commonly 

used tool since it is standard method employed in CAD programs. NURBS generalizes B-Splines and consequently inherit 
all of their favourable properties for free from design. NURBS are commonly used in Computer Aided Design (CAD), 

Computer Aided Manufacturing (CAM) and Computer Aided Engineering (CAE).  
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Isogeometric Analysis is based on NURBS, has refinement procedure related to h-refinement, p-refinement which 

are respectively known as Knot Intersection and Degree Elevation. Hence, Isogeometric Analysis has advantages like: 

 Directly interacting with the CAD systems 

 Greatly simplifying the refinement processes 

 Improving the solution accuracy 

 Reducing the computational costs and time 

 

III. B-Splines & NURBS 

A. B-Splines 

Knot Vector: A knot vector in one dimension is a non-decreasing set of coordinates in the parameter space, written = 

{ξ1, ξ2, . . . , ξn+p+1}. 

Where, ξi ∈ R is the ith knot,  

  i= the knot index, i = 1, 2, . . . , n + p + 1,  

  p = the polynomial order, and  

  n = the number of basis functions used to construct the B-spline curve. 
Knot vectors may be uniform if the knots are equally spaced in the parameter space. 

Knot vector may be non-uniform if they are unequally spaced in the parameter space. 

A knot vector is said to be open if its first and last knot values appear p + 1 times. 

B. Parametric Domain of B-Splines 

 B-splines are defined on a parameter space Ω΄. The B-Spline parameter space is local to “patches” instead of 

elements, where the patch can be seen as a “macro-element”. The parameter domain itself is defined by the knot vector(s) 

Ξ. The knot vector is defined as under, 

 
Where, ξi ∈ R is the ith knot,  

   i is the knot index, i = 1, 2, . . . , n + p + 1,  

   p is the polynomial order, and  

   n is the number of basis functions used to construct the B-spline curve. 

Higher Dimensional parameter space are constructed using a tensor product of 1D knot vectors. Hence the parametric 

domains are defined by the set [a, b]d ∈ Rd with d is the dimension of the space. Using the knot vector we can construct B-
Spline basis function of order p+1 which are piecewise polynomials of degree p. Repeated knots are allowed, 

hence . A knot which is repeated k times in knot vector is said to have a multiplicity k.  

C. B-Spline Basis Function 

The B-Spline basis function are defined recursively starting with piecewise constants (p = 0): 

                                                                                               (1) 

For polynomial order p=1, 2, 3,… they are defined by, 

                                                    (2) 

So given a knot vector and a polynomial degree the B-Spline function space B is uniquely defined as 

 

The result of equation (1) and (2) is shown in Figure 1 for the knot vector . Figure 1 shows 

Recursive generation of a cubic basis for the uniform knot vector .  An example of a quadratic 
basis for an open, non-uniform knot vector is shown in Fig.-3.2. Here the implications of the repeated knots at the ends of 

the interval and also at   = 4 are shown, where the continuity is lowered to C0. The other basis functions are C1 
continuous. Degree p basis functions have up to p−1 continuous derivatives. A repeated knot will reduce the number of 

continuous derivatives by 1. When the multiplicity equals p, the basis function is nodal. ` 
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Figure 1. B-Spline Basis Function 

The basis functions possess the following important properties: 

a) Non-negativity:  

b) On a knot span  there are p+1 non-zero functions.  

c) Partition of Unity.   

d) The basis function from a linear independent basis which makes them suitable for analysis.  

e) . 

f) For compact support . Higher order functions have support across larger portions of the domain. This 

increase in support has no implications on the bandwidth of the resulting linear system in numerical applications. 

The total number of functions that any function shares support with (including the function itself) is 2p+1 which 

is equal to that for Lagrange polynomials.  

 

D. Non-Uniform Rational B-Splines (NURBS): 

B-splines have their rational counterparts giving the ability to exactly represent objects that cannot be represented by 
polynomials. For example in CAD circular and conic shapes are often used, which can be exactly represented by NURBS. 

 

E. NURBS basis functions 

The NURBS basis is defined by associating the B-spline basis functions with a strictly positive weight, wi as 

  Where,  

Spanning the NURBS functions space uniquely defined as N  (Ξ; p; w) := span {Ni,p}
n

i=1. Analogous to B-Splines 

higher dimensional function spaces are constructed using tensor products of univariate basis functions N  (Ξ, , …; p, 

q, …; w) := span{ Ni,p  Nj,q  … . 
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The NURBS basis has the following properties: 

1. The NURBS basis constitutes a partition of unity i,p (ξ) = 1 ξ. 

2. NURBS inherit their properties from the B-Spline basis functions like continuity across knots, local support and 

non-negativity. 

3. The NURBS basis functions are not polynomial but rational functions. 

4. If the weights are equal the basis is again polynomial. Hence, B-Splines are a special case of NURBS. 

 

IV.  MODEL INFORMATION 

Isogeometric Analysis gets effective in curvilinear element where meshing is complex problem. This study presents the 

analysis of Beam Curved in Plan (2 Models – Quarter Circle and Semi Circular Models). The general model information 

are given in following table: 

Table 1. Curve Beam Model Information 

 Model-1 Model-2 

Type Quarter Circular Beam Semi Circular Beam 

Cross Section 

  

C/S Size 230 X 300 mm 230 X 300 mm 

Centroidal Radius 4000 mm 4000 mm 

Length 6283.185 mm 12566.370 mm 

Applied Failure Pressure 0.901 N/mm2 0.192 N/mm2 

Nodes 621 344 

Elements 64 28 

Element Types 20 Noded hexahedron 20 Noded hexahedron 

 

 

V. FEA RESULT OF CURVED BEAM 

The finite element analysis of  Beam Curved in Plan (2 Models) are carried out and their different results like Equivalent 

Stress (Von Mises), Maximum Principal Stress, Minimum Principal Stress and Total Deformation are listed out using the 

FEM software tool Simulia Abaqus 6.14 version. 
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A. FEA Result of Curved Beam Model-1: 

 

Figure 2. FEA Result of Model-1 

 

B. FEA Result of Curved Beam Model-2: 

 

Figure 3. FEA Result of Model-2 
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C. FEA Result of Curved Beam: 

Table 2. FEA Result Comparison of Model-1 & Model-2 

 Model-1 Model-2 

Equivalent 

Stress (N/mm2
) 

213.1 216.1 

Maximum 
Principal Stress (N/mm2

) 
243.8 248.00 

Minimum 

Principal Stress (N/mm2
) 

243.6 248.1 

Total 

Deformation (mm) 
10.53 45.86 

 

VI. IGA RESULTS OF CURVED BEAM 

The finite element analysis of  Beam Curved in Plan (2 Models) are carried out and their different results like Equivalent 

Stress (Von Mises), Maximum Principal Stress, Minimum Principal Stress and Total Deformation are listed out using the 

FEM software tool Simulia Abaqus 6.14 version using IGA tool NURBS Plugins.  

A. IGA Result of Curved Beam Model-1: 

 
Figure 4. IGA Result of Model-1 
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B. IGA Result of Curved Beam Model-2: 

 

Figure 5. IGA Result of Model-2 

C. IGA Result of Curved Beam: 

Table 3. IGA Result Comparison of Model-1 & Model-2 

 

 
Model-1 Model-2 

Equivalent Stress 

(N/mm
2
) 

203.5 204.5 

Maximum Principal Stress 

(N/mm
2
) 

235.7 236.7 

Minimum Principal Stress 

(N/mm
2
) 

235.6 236.7 

Total Deformation 

(mm) 
9.938 43.07 

 

VII. COMPARISON OF FEA AND IGA FOR CURVED BEAM MODELS 

The variation in FEA and IGA results are listed in following table: 

Table 4. Percentage Difference in FEA & IGA Results 

 

 
Model-1 Model-2 

Equivalent  Stress  

(%) 
4.50 5.36 

Maximum Principal Stress 

(%) 
3.32 4.556 

Minimum Principal Stress 

 (%) 
3.28 4.594 

Total Deformation  

(%) 
5.62 6.08 
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VIII.  CONCLUSION 

The main focus of this study is to understand the behaviour of curvilinear elements in terms of stresses and deformation. It 

is known to us that the FEA gives a good satisfactory results for any curved or complex geometry. But during literature 

review it has been found that IGA may give more perfect and satisfactory results than FEA.  

In this study, the behaviour of beam curved in plan has been studied and comparative result between FEA and IGA has 

been presented. From these result it has been concluded that the IGA gives less value for stress and deformation than the 

FEA rather keeping same loading condition.  

Comparative results for beam curved in plan are as under: 

 For Quarter Circle Curve Beam, IGA values for Equivalent Stress (Von-Mises), Maximum Principal Stress, 

Minimum Principal Stress and Total Deformation gives 4.50%, 3.32%, 3.28%, 5.62% respectively less than FEA 

values for same loads. 

 For Semi Circular Curve Beam, IGA values for Equivalent Stress (Von-Mises), Maximum Principal Stress, 

Minimum Principal Stress and Total Deformation gives 5.36%, 4.50%, 4.59%, 6.08% respectively less than FEA 

values for same loads. 

As shown in advantage of IGA, IGA improves the solution accuracy and directly integrate with CAD model. From this 

conclusion it has been satisfied over number of curvilinear models.  
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