

International Journal of Advance Research in Engineering, Science & Technology

e-ISSN: 2393-9877, p-ISSN: 2394-2444 Volume 3, Issue 4, April-2016

Roller Compacted Concrete Pavement

Jay Patel

Department of civil engineering, Ipchowala institute of engineering and technology, jayapatel1511@gmail.com

Abstract

The aim of this research is to check the suitability of roller compacted pavement in India. In order to check suitability, samples of M40 grade concrete with 0, 10, 20, 30% replacement of cement by fly ash is tested in the laboratory for compressive and tensile Strength for different time periods (i.e. 3days, 7days, 14days, and 28days). It is cured for 28 days

Keywords- roller compacted concrete, Road, Pavement, compressive strength, grade of concrete, water cement ratio, curing, admixture.

I. INTRODUCTION

Roller compacted concrete or RCC is a special concrete has essentially the same ingredients as conventional concrete, but at different ratios with or without adding admixtures such as fly ash and plasticizer. It is no slump concrete that is compacted by the vibratory roller. It should be dry enough to be able to resist sinking of the roller and Wet enough to the extent that the mortar can be distributed within concrete during vibration. It does not require any formwork and reinforcement still and finishing. It has high production rate. Because it has a small amount of water, it cannot be placed by the same methods used for conventional concrete. Also, the method of compaction is different from conventional concrete and it is compacted by vibration and pneumatic roller. The objective of mix design is to produce a mix that has a sufficient cote volume to cote the aggregates in the mix and to fill voids between them. Any basic method of concrete proportioning like soil compaction method, concrete engineering approach, optimum past volume method

II. METHODOLOGY

In order to check suitability, testing program was aimed to find the possibility of implementing destructive and non-destructive testing to evaluate strength and other effective factors such as durability and density.

Testing program consists of construction of RCC slab and blocks using two types of cement (i.e. Ordinary portend cement and portend pozzolona cement). It is cured for 28 days and then samples are obtained for testing.

Beam and cube are tested for tensile and compressive strength. As properties of materials also affect characteristic of concrete, testing of materials also evaluated.

III. MATERIALS

3.1 Aggregates

Aggregates consists about 70 to 80% volume in RCC. It should be heard, durable, and tough. In fresh stage they affect the workability, potential to segregation and also affect the speed and effectiveness of the roller. Normally RCC mix is not cohesive as conventional concrete so segregation and thus, aggregate segregation may be consideration. Large size aggregates reduce voids and thus reduce pest demand. On the other hand large aggregate can't give bonding. Thus the nominal size of aggregates is 20mm. The table shows aggregate gradations and sieve analysis of aggregate use in RCC.

3.2 chemical admixtures

Sieve designation(mm)	26.50	19.00	9.50	4.75	0.006	0.00075
Parentage passing the sieve by weight	100	80-100	55-75	35-60	10-35	0-5

Effectiveness of chemical admixture is related to cement properties. Retarders are using for delay setting time, which give time for transportation, placing, compaction and prevent cold joint formation between the layers. Air entraining admixtures are used to improve workability of concrete. It reduces water and cement content and helps in improving the durability in freezing and thawing. But at the consistency of the RCC mixes, the real effectiveness is limited.

3.3 Cementations material

Any cement can be used but for heat of hydration consideration, low heat cement is recommended for RCC. As W\C ratio is low Portland pozzolona cement is suitable for RCC and it also reduces heat of hydration and gives batter workability. Other materials such as hydraulic cement, ground granulated blast furnace slug or fly ash may also use after appropriate test.

3.4 Water

Water used in RCC was tap water obtained from Dharmaj area. It is also used for curing.

3.5 Fly ash

Fly ash used in RCC was class-f fly ash obtained from thermal power plant.

IV. MIXDESIGN AND PROPSMING

Special design mix is praperd for M40 grade concrete as per maximum dry density – optimum moisture content method.

Mix Design				
Name	Quantity			
Cement	440			
Water	185			
Fine AGG.	804			
Corse AGG.	1097			
Admixture	4.20			
W/C ratio	0.30			

Table 4.1 Mix design

V. TESTING METHODOLOGY

5.1 mixing

Mixing of concrete was done in mechanical mixer. Before mixing surface of mixer was washed by water. Concrete was mixd for fifteen minites.

5.2 slump test

Appretus of slum test is frist clened and then oil is applied on surface of it. Concrete is filled in slupm cone in three equal layers. After placing of layers 25 blous of tamping road is applied to distirute concrete in cone. After placing all layers top surface is leveled. Then cone was smotly lifeted without distubing concrete. Hight of concrete slump is then massured. This hight gives slump value in mm.

5.3 Casting:

Cube mold size of 150*150*150 cm were casted in conventional method to know compressive strength of concrete. Beam were casted to know tensial strength of concrete. Moulds were cleaned and inside surface was oiled. Now moulds were placed on vibrator machine and filled with concrete in five layers by giving vibration to each layer for period of 2 minutes. After that compression is applied on concrete with help of hammer blows. Level the top surface and smoothen it with a trowel

5.4 Curing:

The mold filled with concrete are stored in moist air for 24 hours and let them settle. After this period the it is de-molded and kept submerged in clear fresh water until taken out prior to test.

5.5 compressive strength testing and tensile strength

M40 grade of concrete cubes of 15cm were used to determine the compressive strength. In total 16 cubes were casted. With 0,10,20,30% of fly ash replacement. The compressive strength was tested after 3,7,28 days. This cubes were tested under compression testing machine. Results shown in below table.

Replacement by fly	3 day strength	7 day strength	14 day strength	28 day strength	
ash	N/MM^2	N/MM^2	N/MM^2	N/MM^2	
0%	29.63	53.11	64.69	71.11	
10%	27.72	43.56	54.80	65.32	
20%	26.46	39.48	53.06	60.89	
30%	24.52	32.69	52.36	56.96	

Table 5.1 Compressive strength

Replacement by fly ash	Tensile strength
0%	4.5
10%	3.98
20%	2.90
30%	2.89

Table 5.2 Tensile strength

VI. COST

Cost of concrete depends on cost of cement hence reduction in use of cement will reduce overall cost of concrete.

International Journal of Advance Research in Engineering, Science & Technology (IJAREST) Volume 3, Issue 4, April 2016, e-ISSN: 2393-9877, print-ISSN: 2394-2444

No	% Fly Ash	Cement	F.A	C.A	Admixture	Fly ash	Total
1	0	2464	402	658	134	0	3658
2	10	2217	402	658	134	44	3455
3	20	1971	402	658	134	88	3253
4	30	1724	402	658	134	132	3050

Table 6.1 Cost of materials

Price of material Cement 280 per Rs bag(50 kg) Fine agg. 500 Rs per ton Coarse agg. 600 Rs per tone Fly ash 1000 Rs per tone

Chemical admixture 32 RS per liter (1 lit = 1 kg)

CONCLUSIONS

- Replacing cement by fly ash will reduce cost of concrete
- It reduces heat of hydration
- Addition of proper admixture achieve early strength and reduce water requirement
- We have observed that addition of fly ash reduces cost by 30%
- We have observed that cement content in trial mix get completely hydrate to achieve M40 design strength.
- We have observed that compressive and tensile strength of Roller compacted concrete replaced by fly ash is nearly same as concrete without fly ash

REFERENCE

- [1] M.L.Gambhir, McGrow-hill, Reference book On Concrete Technology.
- [2] M.S.Shetty, S. CHAND, Reference book On Concrete Technology.
- [3] Mohamed I. Abu Khashba , I. Adam, A. El-Ashaal,16 June 2013,Alexandar Engineering Jpurnal, "Investigating the possibility of constructing low cost roller compacted concrete dam"
- [4] Martin Wieland and R. Peter Brenner $,1^{st}$ Aguast ,2004 "Earthquake Aspect Of Roller Compacted Concrete And Concrete Face Rockfill Dams"