
 International Journal of Advance Research in Engineering, Science &
Technology

e-ISSN: 2393-9877, p-ISSN: 2394-2444

Volume 3, Issue 2, February-2016

All Rights Reserved, @IJAREST-2016
171

Impact Factor (SJIF): 3.632

 Survey on the Methodologies to Improve the Scalability of SWS
Mr. Ajay Kumar

1
, Dr. Naresh Chauhan

2
, Dr. Jyoti

3

1Computer Science & Engineering, JSSATE, Noida
2Computer Engineering, YMCAUST, Faridabad
3Computer Engineering, YMCAUST, Faridabad

Abstract: A system is said to scale if it is suitably efficient and practical when applied to large situations (e.g. a large

input data set, a large number of outputs or users, or a large number of participating nodes in the case of a distributed

system). If the design or system fails when a quantity increases, it does not scale. Similarly the nodes get overloaded by

service registration queries or service discovery queries, the performance of the system is degraded. So in order to scale
the service discovery system there is a need to develop some techniques which can provide the scalability to the semantic

web services (SWS). This paper describes some methodologies to improve the scalability of these services in order to

resolve the performance issues.

Keywords: Scalable Service discovery, Network scalability, Scalable semantic web services

I. INTRODUCTION

A. SEMANTIC WEB

Developers could not process the documents on a global scale with the current web so that one possible solution is to

modify the Web documents, and one such modification is to add some extra data to these documents, the purpose of this

extra data is to enable the computers to understand the meaning of these documents. So Semantic Web is an extension of

the current Web in which information has well defined meaning which enables the computers and humans to work in

cooperation. It is a web of data that can be processed directly and indirectly by machines. It is to allow machines to

“understand” the web better so that they can help people with making proper sense out of the large amounts of content

available out there. It provides a common framework that allows data to be shared and reused across application,

enterprise, and community boundaries.

B. SEMANTIC WEB SERVICES (SWS)

Semantic Web Services are the web services for Semantic web. Web Service is a software system designed to support

interoperable machine-to-machine interaction over a network and Semantic Web Service can be viewed as a way to extend

the capabilities in the direction of dynamic interoperability and addresses the need for interoperability to represent the

content communicated between distributed components mentioned in the conceptual architecture in the following section.

1.1. Architecture Of Semantic Web Services

The SWS architecture [2] covers the various group of functions performed by Semantic Web agents (service providers,

requesters, and middle agents called matchmakers) In this sub-section the paper describes the paper describes the

functions performed by these agents

1.1.1. Service Advertisement

It is the responsibility of server to tell the environment which semantic web services are available and what they

provide. A server has to advertise these services to the environment. Traditional web services use WSDL [2][25] (Web
Service Description Language) for this purpose. WSDL is the XML document which provides the name and location

of web services. Semantic web services on the other hand will provide semantically enhanced information means it

provide meaning to the information i.e. metadata. OWL-S [2][32] (Ontology Web Language for Semantic Web) for

example uses the Service-Profile for this, while WSMO (Web Service Modeling Ontology) advertises service by

means of its Goals defined by client or requester and Capabilities. Also the server needs to provide a process model

which describes how the client can use the services to achieve a specific effect and result. The service provider must be

able to advertise the semantic web services it provides in terms of a specific ontology. The server must be able to

provide a process model (model to implement these services) of the services it offers.

http://en.wikipedia.org/wiki/Algorithmic_efficiency

International Journal of Advance Research in Engineering, Science & Technology (IJAREST)
Volume 3, Issue 2, February 2016, e-ISSN: 2393-9877, print-ISSN: 2394-2444

All Rights Reserved, @IJAREST-2016
172

“Figure 1.Semantic web Service Architecture”

1.1.2. Service Discovery

It is the responsibility of client to find a set of web services and to choose one that meets the client’s requirements. The

client needs to find a web service that is capable of achieving the desired results. The system should provide a

repository / storage directory that collects all known semantic web services. The repository/ storage directory should be

able to select services from the set of known services that gives the desired results.

1.1.3. Service engagement- Negotiation & Contraction

Service engagement means agreement between both the agents i.e. service provider and service requester. The
agreement is about the attributes of product like quality, price to be paid for a service and negotiation with each

prospective service to reach agreement on the terms of service to be provided.

1.1.4. Service Enactment

It is the interactive process incorporated by passing messages between clients and services that accomplishes their

mutual objectives. If the desired objectives are not accomplished then there would be the protocols interactions to

address compensation issues.

A Critical look at the above architecture concludes that the servers are being overloaded by its functionality of

advertisements & fulfilling the client’s requests Due to which some performance issues occurs and results in poor
scalability which is defined in the following section.

C. SCALABILITY

It is the ability of a system, network, or process to handle a growing amount of work in a capable manner or its ability to

be enlarged to handle that growth. For example, it can refer to the capability of a system to increase total throughput

under an increased load when resources are added. A system is said to scale if it is suitably efficient and practical when

Service

provider agent

Publish

advertisement

Candidate

Service

Discovery

Service

requester

agent

Candidate

Services

Service

Selection

&

engagem

ent

Selected

Service

provider &

agreement

Service

enactm

ent

Service

Discov

ery

query

Protoc-

ol

Service

Storage

Director

y

Using Advertising Protocols

Using

Interaction

Protocols

http://en.wikipedia.org/wiki/Algorithmic_efficiency

International Journal of Advance Research in Engineering, Science & Technology (IJAREST)
Volume 3, Issue 2, February 2016, e-ISSN: 2393-9877, print-ISSN: 2394-2444

All Rights Reserved, @IJAREST-2016
173

applied to large situations (e.g. a large input data set, a large number of outputs or users, or a large number of

participating nodes in the case of a distributed system). If the design or system fails when a quantity increases, it does not

scale. Similarly when the nodes get overloaded by service registration queries in service discovery mechanism [8][9][10]

mentioned in the above architecture, the performance of the system can be degraded. Scalability can be achieved by

various methods used in service discovery mechanisms, by using extra hardware in the system, by using load balancing

algorithms etc. In order to improve the performance, there is a need to design a scalable architecture for Semantic web

Services which can improve the scalability of the system. The next section focuses on the detailed literature survey

performed in this area of Semantic Web Services

II. RELATED STUDY

A lot of work has been done by researchers till now with respect to improve the scalability of semantic web services so

that performance issues can be resolved. The work done by the researchers as of now is reviewed in this section.

Hogan et al. [3] compute the closure of an RDF graph doing two passes over the data on a single machine. They have
implemented only a fragment of the OWL Horst semantics, in order to prevent ontology hijacking. Several distributed

system was proposed to calculate the closure and querying.

Mika and Tummarello [4] use MapReduce to answer SPARQL queries over large RDF graphs, but details and results

are not reported.

Soma and Prasanna [5] present a technique for parallel OWL inference through data partitioning. The experiments were

conducted only on small datasets (1M triples) with a good speedup but the runtime is not reported.

Marvinp [6] presents a technique which partitions the data in a peer-to-peer network but results with very large datasets

have not been presented.

In Weaver and Hendler [7] incomplete RDFS reasoning is implemented on a cluster replicating the schema on all the

nodes. This approach is embarrassingly parallel and it cannot be extended to more complicated logic like OWL

Schlicht and Stuckenschmidt [8] presented a promising technique to parallelize DL reasoning with a good speedup but

the performance was evaluated on a small input.

Stephen Gilmore and Mirco Tribastone [14] presented an model that is based on process algebra which allows service

providers to investigate how models of Web service execution scale with increasing client population sizes

Christopher Olston, Amit Manjhi, Charles Garrod [15] developed a technology to enable a third party to offer

scalability as a subscription service with “per-click” pricing to application providers.

Mark Nottingham [16] outlined one approach to scaling Web Services, and proposes further work which leverages

Extensible Markup Language (XML) Protocol's features to help scale them and improve performance

Deshmukh, Prof. Kumarswamy Pamu [17] described the load balancing strategies, algorithms, methods by

investigating the comparative behavior of load balancing with different parameters

Rhodes Hall [18] explored two load balancing algorithms with distributed software load balancers

ZhangLin, Li Xiao-ping and Su Yuan [19] presented a content-based load balancing algorithm. The mechanism of this

algorithm is that a corresponding request is allocated to the server with the lowest load according to the degree of effects
on the server and a combination of load state of server.

International Journal of Advance Research in Engineering, Science & Technology (IJAREST)
Volume 3, Issue 2, February 2016, e-ISSN: 2393-9877, print-ISSN: 2394-2444

All Rights Reserved, @IJAREST-2016
174

III. BRIEF DESCRIPTION OF VARIOUS METHODOLOGIES

After a detailed study of the work done by all researchers to improve the scalability of system, the advantages and

disadvantages of all the methodologies used are mentioned in the Table 1 given below.

“Table 1.Various methodologies to improve scalability”

Sr.

No.

Methodology Analysis Outcomes

1. Use parallel OWL inference is used through

data partitioning.

Abstract Materialized

knowledge bases perform

inference when data is loaded

into them, so that answering

queries is reduced to simple

lookup and thus are faster.

Advantages:

 Speed up the performance

& scaled well

Disadvantage:

 Inference process is slow

and memory intensive.

2. Partitioning of data in a peer-to-peer network Scalable Resource Document

Format (SRDF) reasoning is

used to deal with massive

volumes of Semantic Web data

Advantages:

 Improves scalability of the

system

Disadvantages:

 Divide and conquer

strategy has applied over
small dataset not for large

dataset till now

3. Use Resource Description Format Schema

(RDFS -extension of RDF) reasoning is

implemented on a cluster which replicates the

schema on all the nodes and swarn

intelligence algorithms

It distributes both data and

requests onto multiple

computers and it describes a

novel approach for reasoning

within a fully distributed and

self-organized storage system

that does not require any

schema replication.

Advantages:

 Scale the system and

Speed up the performance

Disadvantages:

 It is very difficult to run on

ontology environment

 This model has high

computational cost

4. Use a model that is based on process algebra

which allows service providers to investigate
how models of Web service execution scale

with increasing client population sizes

In Performance Evaluation

Process Algebra a system is
viewed as a set of components

which carry out activities

either individually or in

cooperation with other

components.

Advantages:

 This model has low
computational cost

Disadvantages:

 It is very difficult to

implement these kind of

models in ontology

environment.

5.

Use a third party to offer scalability as a

subscription service with “per-click” pricing

to application providers.

A fully distributed update

propagation scheme which has

independence relationships

between query and update

templates are determined
offline and then used at

runtime to limit the number of

proxy servers receiving

notification of each update.

Advantages:

 Unlimited scalability to

applications so that users

are never denied access due

to overloaded situations

Disadvantages:

 Lack of cache

management techniques

that always avoid

overloading home servers

by continuously monitoring

and reacting to changing

conditions

International Journal of Advance Research in Engineering, Science & Technology (IJAREST)
Volume 3, Issue 2, February 2016, e-ISSN: 2393-9877, print-ISSN: 2394-2444

All Rights Reserved, @IJAREST-2016
175

6.

Use the Load balancing strategies, algorithms

& methods

Various load balancing

algorithms like content based,

Join idle queue algorithm, are

used to distribute load on

different computers by

calculating the load.

Advantages:

 Scale up the system and

improve the performance.

Disadvantages:

 Load balancers are cost

effective and lack of

efficient load balancing

algorithms

7. Use more than one server to store the services Some intermediate devices are

used to handle the problem of
scalability and some

optimization techniques are

used to allow scalability of

web services.

Advantages:

 Increased Scalability

 Increased Performance

Disadvantages

 Increased Cost

8 Use the Load balancing strategies, algorithms

with distributed software load balancers:

Load balancers are used as a

hardware to balance the load in

the system .Load balancers

distributes the load of a node

which is being overloaded to

other nodes in the system

Advantages

 Load balancers are

divisible

 Easy to assemble

 They provide scalability

Disadvantages:

 They are cost effective

IV. COMPARISON

 After the brief discussion on the methodologies to improve scalability, it is observed that there are some advantages and

disadvantages of each method. So the comparison of these methods on the basis of some parameters is mentioned in

Table 2 given below.

“Table 2.Comparison of various methodologies”

 Parameters

Methods

Memory

Intensive

Cost

Effective

Easy

To

Implement in

ontology

environment

Applicable on

large data set

Speed up the

performance

OWL inference

√ √ × × √

Data partitioning

× × × × √

RDFS reasoning to

replicate the schema

√ × √ √ √

Model based on

process algebra

× × √ √ √

Distributed update

propagation scheme

× × × √ √

load balancing

algorithms

× √ × √ √

International Journal of Advance Research in Engineering, Science & Technology (IJAREST)
Volume 3, Issue 2, February 2016, e-ISSN: 2393-9877, print-ISSN: 2394-2444

All Rights Reserved, @IJAREST-2016
176

intermediate devices

× √ × √ √

V.CONCLUSION

This paper describes the research work done by the researchers to improve the scalability of the system in order to make

the semantic web services scalable. It concludes the advantages and disadvantages all the methodologies to improve the

performance of the system. In order to eliminate all the limitations of these methods, there is a need to design new

storage directory structures, service discovery mechanisms, load balancing techniques etc

VI. FUTURE WORK

A Scalable Architecture can be implemented in the structured distributed environment in order to solve the performance

and functional issues through various new techniques of storage mechanism and storage information processing models.

VII. REFERENCES

1. World Wide Web Consortium. "Web Services" [Online].Available: http://www.w3.org/2002/ws/

(visited:01/07/2009)

2. Erik Christensen, F. Curbera, G. Meredith, and S. Weerawarana (03/15/2001). "Web Services Description

Language" [Online]. Available: http://www.w3.org/TR/wsdl(visited:01/07/200

3. Kagal, L., T. Finin, and A. Joshi, “A Policy Based Approach to Security for the Semantic Web”, in ISWC 2003,

LNCS 2870, (2003), 402-418.

4. Yu, T. and M. Winslett, Supporting “Structured Credentials and Sensitive Policies through Interoperable Strategies
for Automated Trust Negotiation”, in ACM Transactions on Information and System Security, 6(1), Feb., 2003.

5. R. Soma and V. Prasanna. “Parallel inferencing for OWL knowledge bases”, In International Conference on

Parallel Processing”, pages 75-82, 2008.

6. J. Weaver and J. Hendler. “Parallel materialization of the finite rdfs closure for hundreds of millions of triples”. In

Proceedings of the ISWC '09, (2009).

7. E. Oren et al. Marvin: “A platform for large-scale analysis of Semantic Web data”. In Proceedings of the

International Web Science conference, (2009).

8. A. Schlicht and H. Stuckenschmidt. “Distributed Resolution for Expressive Ontology Networks”, In Proceedings of

the Web Reasoning and Rule Systems 2009, page 87. Springer, (2009).

9. E. Guttman and C. Perkins. “Service location protocol”, version, June (1999).

10. Sun Microsystems. Jini architecture specification version 2.0, June (2003)

11. Michael Nidd. Service discovery in DEAPspace ieee-pcm, 8(4):39–45, August (2001).

12. J. Wu and M. Zitterbart. Service awareness in mobile ad hoc networks.

13. Boulder, Colorado, USA,March 2001. Paper Digest of the 11th IEEE Workshop on (LANM)

14. S. Gilmore and J. Hillston. “The PEPA Workbench: A Tool to Support a Process Algebra-based Approach to

Performance Modelling”, In Proceedings of the Seventh International Conference on Modelling Techniques and

Tools for Computer Performance Evaluation, number 794 in Lecture Notes in Computer Science, pages353–368,

Vienna, May (1994). Springer-Verlag.

http://www.w3.org/TR/wsdl(visited:01/07/200

International Journal of Advance Research in Engineering, Science & Technology (IJAREST)
Volume 3, Issue 2, February 2016, e-ISSN: 2393-9877, print-ISSN: 2394-2444

All Rights Reserved, @IJAREST-2016
177

15. Olston, Christopher; Manjhi, Amit; Garrod, Charles; Ailamaki, Anastassia; Maggs, Bruce M.; and Mowry, Todd C.,

"A Scalability Service for Dynamic Web Applications" (2005). CS Department. Paper 1115.

http://repository.cmu.edu/compsci/1115

16. DFSScale - M. Satyanarayanan. "The Influence of Scale on Distributed File System Design", In IEEE

Transactions on Software Engineering, January (1992).

17. http://www.radharc.com/whitepapers/Server Load balancing.pdf

18. http://foie.ece.cornell.edu/~isn/2011-11 14%20ISN%20Seminar%20-%20Yi%20Lu.pdf.

19. C.-S. Yang, M.-Y. Luo. “content placement and management system for distributed Web-server systems”. In Proc.

of IEEE 20th Int. Conf. on Distributed Computing Systems (ICDCS’20).

20. Ankolekar, A., et. al., “DAML-S: Web Service Description for the Semantic Web”, The Semantic Web - ISWC

(2002), 348-363.

21. Gibbins, N., S. Harris, and N. Shadbolt, “Agent-Based Semantic Web Services”, in WWW2003, Budapest, Hungary,

May 20-24, (2003), 710-717

22. http://www.w3.org/TR/ws-arch. Accessed February (2012).

23. XMethods, http://www.xmethods.net , Accessed February (2012).

24. http://www.remotemethods.com , Accessed February (2012), Remote Methods: Home of Web Services.

25. WebServiceList, http://www.webservicelist.com , Accessed February (2012).

26. http://www.tutorialspoint.com/webservices/web_services_architecture.html .

27. http://en.wikipedia.org/wiki/Web_services_protocol_stack

28. http://msdn.microsoft.com/enUS/library/windows/desktop/aa966274%28v=bts.10%29.aspx

29. http://msdn.microsoft.com/enus/library/ms996486.aspx

30. http://www.w3schools.com/wsdl/wsdl_documents.asp

31. http://en.wikipedia.org/wiki/Universal_Description_Discovery_and_Integration

32. Zaidi Fayçal and Touahria Mohamed, “A Semantic Web Services for Medical Analysis using the OWL-S

Language”, in International Journal of Computer Applications (0975 – 8887), Volume 30– No.5, September (2011).

33. Nikolaos Loutas et. al. “The Semantic Search Engine (S3E)”, published on Springer Science + Business Media, LLC

(2011).

34. Vitezslav Nezval and Francois Bartolo, “A Model for Easy Public Searching of Web Services”, JJ Yonazi et al.

(Eds.): IceND 2011, CCIS 171, pp. 209-222, 2011, and Springer-Verlag Berlin Heidelberg (2011).

35. Fangfang Liu, Yuliang Shi, Jie Yu , Tianhong Wang and Jingzhe Wu, “Measuring Similarity of Web Services Based

on WSDL”, in IEEE International Conference on Web Service, (2010).

http://www.cs.cmu.edu/afs/cs/project/coda/Web/docdir/tse91.pdf
http://www.radharc.com/whitepapers/Server%20Load%20balancing.pdf
http://msdn.microsoft.com/en-
http://msdn.microsoft.com/en-

