
International Journal of Advance Research in Engineering, Science & Technology(IJAREST),

ISSN(O):2393-9877, ISSN(P): 2394-2444,
 Volume 2 , Issue 7 , July, 2015, Impact Factor: 2.125

All Rights Reserved, @IJAREST-2015

34

Survey on LZW-Dictionary based Data compression Technique

Sonal M. Belani
1
, Chintan K. Bhavsar

2

1Infromation Technology, MBICT- New V.V.Nagar, belanisonal@gmail.com

2 Computer Engineering , GCET- V.V.Nagar, ck.bhavsar@gmail.com

Abstract

Data compression techniques are used to reduce size of original data. Now a day’s data transmission storage and

processing are the integral parts of information systems and used in day to day life. Data transmission of large size

of data over a network and also storage of large amount of data is critical task. Larger memory and increased

bandwidth utilization is required by the system to store and transmit large amount of data over network. Due to this
reason it increases the hardware and transmission cost. For this one solution can be that to reduce size of data

before storage or transmission without affecting the information content of the data. To reduce size of data without

affecting original data there are different data compression encoding techniques are available. In this paper, we

survey on existing work which is used dictionary based data compression techniques and also give general

introduction of different dictionary based data compression techniques

 Keywords: data compression, dictionary based compression,LZ77, LZ78,LZW

I. INTRODUCTION

As per the situation of now a days internet users are
rapidly grows so internet must requires to be capable

for fast delivering text, voice, video and all other kind

of multimedia information. To this end, the quest for

faster and faster computing facilities (including CPU,

memory, switching devices, and more) alone is

insufficient; as one might expect, how to utilize the

existing bandwidth effectively is also a key upon

which the success of the Internet heavily relies [1].

In Statistical modeling it calculate probability of

character reads in and encodes a single symbol at a
time. Dictionary based modeling uses a single code to

replace strings of symbols. In dictionary-based

modeling, the coding problem is significantly

reduced, leaving the model supremely important [2,

7]. Also, Adaptive models have been proposed in

which, data does not have to be scanned once before

coding in order to generate statistics.

Statistical compression techniques such as Shannon-

Fano Coding, Huffman coding, Adaptive Huffman

coding, Run Length Encoding and Arithmetic coding.

The Dictionary based compression technique
Lempel-Ziv scheme is divided into two families:

those derived from LZ77 (LZ77, LZSS, LZH and

LZB) and those derived from LZ78 (LZ78, LZW and

LZFG).

Some Dictionary based data compression techniques

are:

LZ77:

This dictionary-based scheme was presented by

Jacob Ziv and Abraham Lempel in 1977 for lossless

data compression. By their authors name and the year

of implementation this technique is remembered.

In LZ77, the encoder uses a sliding window (implicit
dictionary) over the text to search for previous

occurrences of substrings [5].

LZ77 exploits the fact that words and phrases within

a text file are likely to be repeated. When there is

repetition, they can be encoded as a pointer to an

earlier occurrence, with the pointer accompanied by

the number of characters to be matched. No prior

knowledge of the source and seems to require no

assumptions about the characteristics of the source

[5].

The encoder examines the input sequence through a
sliding window which consists of two parts: a search

buffer that contains a portion of the recently encoded

sequence and a look-ahead buffer that contains the

next portion of the sequence to be encoded. The

algorithm searches the sliding window for the longest

match with the beginning of the look-ahead buffer

and outputs a reference (a pointer) to that match. In

LZ77 the reference is always output as a triple

<o,l,c>, where „o‟ is an offset to the match, „l‟ is

length of the match, and „c‟ is the next symbol after

the match. If there is no match, the algorithm outputs

a null-pointer (both the offset and the match length
equal to 0) and the first symbol in the look-ahead

buffer.

There are lots of ways that LZ77 scheme can be

made more efficient and many of the improvements

deal with the efficient encoding with the triples.

There are several variations on LZ77 scheme, the

best known are LZSS, LZH and LZB. LZSS which

International Journal of Advance Research in Engineering, Science & Technology(IJAREST),

ISSN(O):2393-9877, ISSN(P): 2394-2444,
 Volume 2 , Issue 7 , July, 2015, Impact Factor: 2.125

All Rights Reserved, @IJAREST-2015
35

was published by Storer and Szymanksi removes the

requirement of mandatory inclusion of the next non-

matching symbol

into each codeword. Their algorithm uses fixed

length codewords consisting of offset and length to

denote references. They propose to include an extra

bit (a bit flag) at each coding step to indicate whether

the output code represents a pair (a pointer and a

match length) or a single symbol.

LZ78:
In 1978 Jacob Ziv and Abraham Lempel presented

their dictionary based scheme [5], which is known as

LZ78. It is a dictionary based compression algorithm

that maintains an explicit dictionary. This dictionary

has to be built both at the encoding and decoding side

and they must follow the same rules to ensure that

they use an identical dictionary. The code words

output by the algorithm consists of two elements

<i,c> where „i‟ is an index referring to the longest

matching dictionary entry and the first non-matching

symbol. [5] In addition to outputting the codeword

for storage / transmission the algorithm also adds the
index and symbol pair to the dictionary. When a

symbol that is not yet found in the dictionary, the

codeword has the index value 0 and it is added to the

dictionary as well. The algorithm gradually builds up

a dictionary with this method.

LZW:

LZW is variant of LZ78, developed by Terry Welch

in 1984. It basically applies the LZSS principle of not

explicitly transmitting the next non-matching symbol

to LZ78 algorithm. The dictionary has to be

initialized with all possible symbols from the input
alphabet [5].

An LZW token consists of just a pointer to the

dictionary. The LZW method starts by initializing the

dictionary to all the symbols in the alphabet. In the

common case of 8-bit symbols, the first 256 entries

of the dictionary (entries 0 through 255) are occupied

before any data is input. Because the dictionary is

initialized, the next input character will always be

found in the dictionary. This is why an LZW token

can consist of just a pointer and does not have to

contain a character code as in LZ77 and LZ78.

LZW Algorithm steps:
1. Initialize table with single character strings

2. P = first input character

3. WHILE not end of input stream

4. C = next input character

5. IF P + C is in the string table

6. P = P + C

7. ELSE

8. output the code for P

9. add P + C to the string table

10. P = C

11. END WHILE

12. output code for P

Example of LZW:

ABABBABBB

ENCODER OUTPUT String Table

output

code

representing codeword String

65 A 256 AB

66 B 257 BA

256 AB 258 ABB

257 BA 259 BAB

66 B 260 BB

260 BB

II. LITERATURE SURVEY:
 A COMPARATIVE STUDY OF TEXT COMPRESSION

ALGORITHMS

Senthil and Et.all [5] compared lossless compression

algorithms using Statistical compression techniques

and Dictionary based compression techniques were

on text data and analyzed LZB outperforms LZ77,

LZSS and LZH to show a marked compression,

which is 19.85% improvement over LZ77, 6.33%

improvement over LZSS and 3.42% improvement

over LZH, amongst the LZ77 family. LZFG shows a

significant result in the average BPC compared to

LZ78 and LZW. From the result it is evident that
LZFG has outperformed the other two with an

improvement of 32.16% over LZ78 and 41.02% over

LZW.

DATA COMPRESSION ON COLUMNAR-DATABASE USING

HYBRID APPROACH (HUFFMAN AND LEMPEL-ZIV WELCH

(LZW) ALGORITHM)

Dalvir and Et.all [8] provide Hybrid approach on

Columnar Database using Lossless Huffman Coding

and Lempel-Ziv Welch Algorithm Features. They
had discussed only the Huffman and LZW coding

decoding on data images and show the image

compression using MATLAB software. Compression

is achieved by removing one or more of the three

basic data redundancies:

1) Coding redundancy, which is presented when less

than optimal code words are used;

2) Inter pixel redundancy, which results from

correlations between the pixels of an image;

3) Psycho visual redundancy, which is due to data

that are ignored by the human visual system [13]

They conclude Hybrid approach based on Huffman
coding and Lempel Ziv coding is very efficient

technique for compressing the data image.

International Journal of Advance Research in Engineering, Science & Technology(IJAREST),

ISSN(O):2393-9877, ISSN(P): 2394-2444,
 Volume 2 , Issue 7 , July, 2015, Impact Factor: 2.125

All Rights Reserved, @IJAREST-2015
36

OPTIMIZATION OF LZW ALGORITHM TO

REDUCE TIME COMPLEXITY FOR DICTIONARY

CREATION IN ENCODING AND DECODING

Nishad & R. Et.all [9] discussed a methodology to

reduce time complexity by combining binary search

with LZW. They proposed a new approach using the

simple binary search to overcome the problems of

child node insertion using LZW with the Binary

Search Tree or the Self Balanced binary tree, by
using binary search, the sorted table (Dictionary) is

constructed. Therefore the complexity of using the

Binary Search Tree (BST) and the self balanced

binary search tree gradually decreases the complexity

in time. The proposed method also reduces the

algorithmic complexity. To reduce comparison ratio

using the binary search tree the sorted table

(Dictionary) is generated using binary search. As a

result their proposed methodology reduces the

complexity in time with Binary search tree. The

experimental result shows 94.21 % improvement on

Compression and 93.34% improvement on
Decompression.

A HIGH-PERFORMANCE REVERSIBLE DATA-HIDING SCHEME

FOR LZW CODES

Zhi-Hui and Et.all [11] proposed a high-

performance, data-hiding Lempel–Ziv–

Welch(HPDH-LZW) scheme, which reversibly

embeds data in LZW compression codes by

modifying the value of the compression codes, where

the value of the LZW code either remains unchanged

or is changed to the original value of the LZW code

plus the LZW dictionary size according to the data to
be embedded Compared to other information-hiding

schemes based on LZW compression codes, their

proposed scheme achieves better hiding capacity by

increasing the number of symbols available to hide

secrets and also achieves faster hiding and extracting

speeds due to the lower computation requirements.

Their results with the proposed scheme have

confirmed both its high embedding capacity and its

high speed when hiding and extracting data.

III. Conclusion

LZW is a universal lossless data compression

algorithm, In this paper, we have surveyed existing

work done on LZW. We also give general guide line

about LZW. We conclude that all there are different

lossless data compression algorithms used to

compress the data but LZW had better compression

ratio among basic data compression algorithm.

References:

[1] Khalid Sayood, “Introduction to Data

Compression”, 2nd EditionSan Francisco,

CA, Morgan Kaufmann, 2000.

[2] Welch T.A., “A technique for high-

performance data compression”, IEEE

Computer, 17, pp. 8–19, 1984.

[3] Ziv. J and Lempel A., “A Universal

Algorithm for Sequential Data
Compression”, IEEE Transactions on

Information Theory 23 (3), pp. 337–342,

May 1977.

[4] Ziv. J and Lempel A., “Compression of

Individual Sequences via Variable-Rate

Coding”, IEEE Transactions on Information

Theory 24 (5), pp. 530–536, September

1978.

[5] S.Shanmugasundaram and R. Lourdusamy

“A Comparative Study Of Text

Compression Algorithms”, International

Journal of Wisdom Based Computing, Vol.
1 (3), December 2011, PP-68-76

[6] C. Saravanan, M. Surender “Enhancing

Efficiency of Huffman Coding using

Lempel Ziv Coding for Image

Compression” International Journal of Soft

Computing and Engineering, ISSN: 2231-

2307, Volume-2, Issue-6, January 2013

[7] E.Guy Blelloch “Introduction to Data

Compression “Computer Science

Department Carnegie Mellon University

January 31, 2013.

[8] Dalvir Kaur and Kamaljeet Kaur, “Data

Compression on Columnar-Database Using

Hybrid Approach (Huffman and Lempel-Ziv

Welch Algorithm)”, Valume-3, Issue-5,

May-2013.

[9] Nishad P M and R. Manicka Chezian,

“Optimization of LZW algorithm to reduce

time complexity for dictionary creation in

encoding and decoding” , Asian Journal of

Computer Science and Information

Technology, 2012.
[10] Simrandeep kaur, V. Sulochana Verma,

“Design and Implementation of LZW Data

 Compression Algorithm”, International

Journal of Information Sciences and

Techniques (IJIST), Vol.2, No.4, July 2012

[11] Zhi-Hui Wang, Hai-Rui Yang, Ting-Fang

Cheng and Chin-Chen Chang, “A high-

performance Reversible data-hiding scheme

for LZW codes”, The Journal of Systems

and Software, 2013, 2771– 2778

