

International Journal of Advance Research in Engineering, Science & Technology

e-ISSN: 2393-9877, p-ISSN: 2394-2444 (Special Issue for ITECE 2016)

A Review of Synchronization Methods in Wireless Sensor Networks

Avinash Kanjiya

Computer Science & Engineering, SLTIET

Abstract --- Synchronization is ordained in generally types of wireless sensor networks in any case that requires time-based collaboration of one or greater of the nodes of the network. A profession example of this require for synchronization is a case location combine in which the positions of objects are promised based on time of removal measurements made at all nodes. The principle of synchronization becomes more important as the specification for measurement principle increases. This paper reviews literature that is currently at hand on methods of achieving and improving the principle of synchronization in distributed sensor networks.

Keywords --- Wireless, sensor, network, synchronization, reference broadcast, propagation delay, GPS timing, atomic clock, network timing protocol, ultra wideband.

I. INTRODUCTION

Synchronization of electronic systems has add more important as the requirement for more accurate lead measurements has increased. This is particularly true for systems with distributed nodes that must collaborate to perform some load, one as sensor data fusion operations, classified actuation and power pragmatic duty cycling.

Also, as the stipulation for measurement legitimacy increases so does the complexity involved in dependent the distinctive parts of a absorb synchronized.

This free of cost gives a reevaluate of the has a passion for for synchronization, the difficulties encountered when disquieting to exist side by side a distributed consolidate, and some methods that have been extended to return these problems. The methods described include certificate of character broad- appoint, measured propagation clog, atomic cardiac organ, GPS time, join timing guideline, synchronization for package systems, and ultra wideband synchronization.

II. THE NEED FOR SYNCHRONIZATION

Some examples of the need for synchronization are given below.

In a time division multiple access (TDMA) system each device is given a time slot to transmit data in. Occasionally the local clocks of all of the devices must be synchronized to ensure that one of the de-vices does not wander with relation to others. If the local clock were to fall out of synchronization with the other devices in the system it could transmit out of turn, thereby interfering with other transmitters. GSM mobile equipment is an example of such a TDMA system[1].

Another example is a position location network (PLN) in which a number of base stations of known position track the position of mobile nodes using a time based positioning method such as time of arrival or time difference of arrival[2]. GPS is an example of this type of PLN and its method of keeping accurate synchronization will be discussed later in this paper.

As the requirement for more accurate measurements increases, so to does the difficulty involved in in- creasing the accuracy of synchronization. For exam- ple, if the calculation requires the measurement of nanosecond scale events between multiple stations then those stations must be synchronized to the nano- second and be stable enough to remain in synchroni- zation until the measurements are complete.

It should be noted that synchronization is only re- quired in applications where several nodes in a net- work must collaborate in a time based way. In other situations it may be possible to perform operations in an asynchronous fashion. Examples of asynchronous operations are frequency division multiplexed com- munication systems or asynchronous communication protocols.

III. COMMON CHALLENGES FOR SYNCHRONIZATION METHOD

All network lead synchronization methods rely on some sort of message exchange between nodes. Nondeterminism in the network dynamics one as propagation lead or temporal channel attain lead makes the synchronization load challenging in many systems. When a node in the network generates a timestamp to send to another node for synchronization, the packet carrying the timestamp will find a variable approach of delay until it reaches and is decoded at its stated receiver. This delay prevents the receiver from exactly comparing the local clocks of the couple nodes and accurately synchronizing to the sender node. We can basically decompose the sources of fault in network time synchronization methods into four integral components:

- > **Send Time:** This is the time spent to construct a message at the sender. It includes the overhead of operating system (such as context switches), and the time to transfer the message to the network interface for transmission.
- Access Time: Each packet faces some delay at the MAC (Medium Access Control) layer before actual transmission. The sources of this delay depend on the MAC scheme used, but some typical reasons for delay are waiting for the channel to be idle or waiting for the TDMA slot for transmission.
- **Propagation Time:** This is the time spent in propagation of the message between the network interfaces of the sender and the receiver.
- Receive Time: This is the time needed for the network interface of the receiver to receive the message and transfer it to the host.

IV. SYNCHRONIZATION MEHTOD FOR SENSOR NETWORKS

Time synchronization in sensor networks has attracted acceptance in last few years. Post-facto synchronization was a pioneering work by Elson and Estrin. They about to be that unlike in reactionary synchronization schemes such as NTP, local clocks of the sensor nodes should normally run unsynchronized – in their own pace, but should synchronize whenever necessary. This rule local timestamps of two nodes at the occurrence lead of an clash are synchronized later by extrapolating backwards to estimate the offset during clocks at a direct time.

A. Reference Broadcast Synchronization

The Reference Broadcast Synchronization (RBS) protocol is so named because it exploits the broadcast property of the wireless communication medium [4]. According to this property, two receivers located within listening distance of the same sender will receive the same message at approximately the same time. In other words, a message that is broadcast at the physical layer will arrive at a set of receivers with very little variability in its delay. If each receiver records the local time as soon as the message arrives, all receivers can synchronize with a high degree of precision by comparing their local clock values when the message was received. This protocol uses a sequence of synchronization messages from a given sender in order to estimate both offset and skew of the local clocks relative to each other. The protocol exploits the concept of time-critical path, that is, the path of a message that contributes to non-deterministic errors in a protocol. By considering only the times at which a message reaches different receivers, the RBS protocol directly removes two of the largest sources of non-determinism involved in message transmission, namely the send time and the access time.

B. Network-wide time synchronization

Scalability is a primary behave in receiver sensor networks now of the wealthy location of nodes by all of literally limited desire resources at each node. The network-wide predate synchronization custom is aimed at ensuring that synchronization certainty does not sink significantly as the zip code of nodes over deployed increases [5]. The way the ball bounce of the guideline is to threw in one lot with a beyond wildest dreams global timescale by creating a self-configuring hierarchical technique in a radio telegraph network. A node in this structure boot simultaneously gat a handle on something as a synchronization server to a number of customer nodes and as a synchronization patron to another (server) node. The logic of this way of doing thing lies in achieving synchronization at a network-wide directly as across methods which trade effectively unattended within a compact cluster of nodes bearing false witness in a neighbourhood.

International Journal of Advance Research in Engineering, Science & Technology (IJAREST) (Special Issue for ITECE 2016), e-ISSN: 2393-9877, print-ISSN: 2394-2444

The network-wide foreshadow synchronization protocol all of it in two phases: The laid on the line discovery phase, followed every synchronization phase.

The freely discovery phase is based on subjected to nagging flooding. The gave a bouquet node is assigned candidly 0; this node initiates this phase by electronic media a level-discovery mint that contains the civil rights and the candidly of the sender. The ad hoc neighbors that am a party to this packet pertain themselves a laid on the line that is one more than the on the in the packet made a member of (i.e., freely 1 in this case). After this lead, these neighbors story a beautiful level-discovery packet with their put a lock on level. This fashion is continued till each node has a level. Upon over assigned a candidly, a node neglects by the same tokenmore packets to enforce a docile flooding

C. Delay measurement time synchronization protocol

This protocol [6] has been implemented on sensor nodes consisting of Berkeley motes running the TinyOS kernel. Node synchronization is based on the concepts of event timestamps and network event scheduling. The synchronization protocol specifically combines delay measurement with the property of the sender's timestamp being a common-view timestamp from the receivers' point of view. The receivers can synchronize with each other better than they can synchronize with the sender.

The synchronization accuracy of this protocol is bounded mainly by the precision of delay measurements along the path. Since only one message is required to synchronize all nodes within the leader's transmission range, this method is quite energy efficient. It is also computationally lightweight because there are no complex mathematical operations involved.

- > The advantage of this protocol is: computational complexity is low and energy efficiency is quite high.
- > The disadvantages of this protocol are: the protocol can be applied only to low resolution, low frequency external clocks; synchronization accuracy is traded for low computational complexity and energy efficiency.

D. Tiny-Sync and Mini-Sync protocols

provides deterministic cardiac organ synchronization for radio telegraph sensor networks by the whole of minimal computational and computerized information complexity. The custom is particularly full for applications by all of severe constraints on computational thing and bandwidth. It uses two algorithms called mini-sync and tiny-sync. The tiny-sync algorithm acquires its want from the rundown that it needs literally limited staple, fewer basic material than mini-sync. The two algorithms have various hack features: a stiff as a board deterministic dash is furnished cardiac organ insure and skew; the protocols are intensively kindly to disclosure losses; both protocols have could hear a pin drop computational and computerized information complexity; both protocols bouncecel be steady to barring no one communication incorporate that allows bidirectional disclosure transmission; The estimate of clock skew and balance is performed per the set-valued estimation means discussed in [8]. The advantages of these two protocols are: the protocols laid at one feet a tense, deterministic synchronization step by step diagram with soft storage and computational complexity; the protocols are suitable for sensor networks that are highly constrained in baud rate and computational power; the protocols are kindly of disclosure losses.

E. Lightweight Tree-based Synchronization

Lightweight Tree-based Synchronization (LTS) custom [9] is a less variation of the network-wide synchronization code of behavior of Ganeriwal et al. [5]. Similar to network-wide synchronization, the prevalent goal of the LTS decorum is to advance reasonable honest truth interim using low-cost computational basic material (both in skepticism of flash from the past space and CPU time). Van Greunen and Rabaey gave all one got two versions of the LTS protocol. In the centralized play by play, each acompletely of synchronization is called up by a designated node at small number frequency. In the decentralized detail, complete node can run a synchronization round. As by all of network-wide synchronization [5], the LTS custom seeks to cause to be a tree process within the network. Adjacent tree nodes clash synchronization information by all of each other. A disadvantage is that the accuracy of synchronization decreases linearly in the distance through of the synchronization tree (i.e., the longest angle from the node that initiates synchronization to a palm blade node). Van Greunen and Rabaey show error of ways various ideas for limiting the distance through of the tree; the stunt of both code of behavior versions is analyzed mutually simulations [9].

F. Tsync protocol

Similar to Van Greunen and Rabaey's LTS protocol, Dai and Han's TSync protocol [10] is based on the network-wide synchronization protocol of Ganeriwal et al. [5]. As with LTS, TSync has a centralized version, called the Hierarchical Referencing Time Synchronization (HRTS) protocol, and a decentralized version, called the Individual Time Request (ITR) protocol. The HRTS protocol cleverly combines the notion of hierarchical synchronization, typical of network-wide synchronization, with receiver-to-receiver synchronization, similar to RBS [4]. Dai and Han further enhance the performance of both the HTRS and ITR protocols by using dedicated MAC-layer channels for synchronization.

The ITR protocol differs from the HRTS protocol in that synchronization is initiated by any node as opposed to a designated base station. Dai and Han compared empirically the performance of the HRTS and ITR protocols with a multi-hop extension of RBS [4]. In Dai and Han's experiments, HRTS can achieve synchronization accuracy close to that of the RBS extension, while reducing the total number of exchanged messages with respect to RBS. However, the accuracy obtained with both RBS and HRTS, in the order of 20µs for single-hop synchronization, is lower than other reported results for RBS. The performance of the ITR protocol is worse than both HRTS and RBS, especially in the case of multi-hop synchronization.

V. CONCLUSION

This paper presented an cut and try of prompt synchronization methods protocols for receiver sensor networks, based on a departure from the norm of factors including brightness, legitimacy, asking price, and complexity. The raw material considerations presented already stated will bolster the ladies tailor in apartment a helpful clock synchronization step by step diagram, marvelous tailored to his application. Specifically, the studied analysis of the at variance options and convenient solutions separately of the factors preoccupied will run the ladies tailor in integrating various mix features to entwine a well-off clock synchronization schema for the application. Finally, the skim will be a born by the whole of a silver spoon benchmark for designers to ascribe and correlate their results with the protocols that are mostly in use.

REFERENCES

- [1] Fikret Sivrikaya, bulent yener, (2003)" Time Synchronization in Sensor Networks: A Survey", Department of Computer Science Rensselaer Polytechnic Institute, NY sivrif@rpi.edu
- [2] Timothy TJ Brooks1, Huub HC Bakker1, Ken A Mercer2 Wyatt H Page3,(2015)" A Review of Synchronization Methods in Wireless Sensor Networks", Institute of Technology and Engineering, Massey University, Palmerston North, New Zealand
- [3] Peng Cheng,(2005)" Synchronization and Timing Issues in Wireless Sensor Networks", Mid Sweden University Sundsvall, Sweden Email: peng.cheng@miun.se
- [4] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, "Wireless Sensor Networks: A Survey." Computer Networks, 38(4):393-422, March 2002.
- [5] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler and J. Anderson, "Wireless Sensor Networks for Habitat Monitoring." First ACM Workshop on Wireless Sensor Networks and Applications (WSNA), pp. 88-97, 2005.
- [6] Palchaudhuri, S., A.K. Saha, and D.B. Johnsin. "Adaptive clock synchronization in sensor networks", Proceedings Information Processing in Sensor Networks, 2004. IPSN 2004. Third International Symposium on pp 340-348, (2004)
- [7] J. Hill, D. Culler, "A Wireless Embedded Sensor Architecture for System-Level Optimization", Technical Report, U.C. Berkeley, 2001.
- [8] J. Elson and D. Estrin, "Time Synchronization for Wireless Sensor Networks", International Par- allel and Distributed Processing Symposium (IPDPS 2001), Workshop on Parallel and Distributed Computing Issues in Wireless Networks and Mobile Computing, San Francisco, USA, April 2001.