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Abstract  

Numerical simulation using computers has increasingly become a very important approach for solving problems in engineering 

and science. It plays a valuable role in providing tests and examinations for theories, offering insights to complex physics, and 

assisting in the interpretation and even the discovery of new phenomena. FEM has been one of major tools in dealing with many 

engineering and academic problems from many decades; however it suffers from the problem of its heavy reliability on quality 

mesh which is not suitable when treating with large deformation problems. The term mesh less (or mesh free) method refers to a 

broad class of effective numerical techniques for solving a growing number of science and engineering applications without the 

dependence of an underlying computational mesh. The variety of problems analyzed by these methods is very large, and ranges 

from fracture mechanics, over fluid mechanics, multiscale problems, and laminated composites, all the way to moving material 

interfaces. The review presented in this paper mainly focuses various mesh free methods, their applications and requirements as 

well as advantages gained by coupling element free methods with the classical FEM. Sometimes it is even more beneficial to 

couple two mesh free methods to get better results. There are various methods to couple such mesh free methods like EFG, MLPG 

and SPH with FEM like master slave coupling, coupling via interface shape functions bridging domain coupling compatibility 

coupling with Lagrange multipliers and hybrid coupling. 

Keywords- FEM, MLPG, EFG, MESHFREE METHODS, LAMINATED COMPOSITES

I. INTRODUCTION 

Mesh free methods can become a good alternative 

to classical Finite Element Method and Finite Differential 

method as it has been proved more flexible and the 

possibility to use for very large deformation also. Mesh free 

methods seems to be more flexible for problems like large 

deformation, fracture and fragmentation, because they do 

not rely on a fixed topological connectivity between nodes. 

The main advantage of mesh free methods reveals on the 

fact while dealing with crack growth problems is that 

particle can be added or removed anywhere without the 

remesh which is necessary in the classical FEM  method. As 

there is no need of remesh in mesh free methods adaptive 

refinement of discretization can be done easily. [1, 110] 

In building a modern and advanced engineering 

system, engineers must undertake a very sophisticated 

process in modeling, simulation, visualization, analysis, 

designing, prototyping, testing, fabrication, and 

construction. The finite element methods are well 

established and powerful computational / simulation 

techniques which are used for modeling and analysis of 

physical phenomena in different fields of engineering and 

applied sciences. [7, 8,]It has successfully been applied for a 

large number of engineering applications, for example solid 

mechanics, structure mechanics, electro magnetism, geo-

mechanics, bio mechanics, aerodynamics and so on, The 

closed examination of above difficulties associated with 

FEM reveals that the root cause is the heavy and rigid 

reliance on the use of quality elements that are the building 

blocks of FEM.  The Finite Element Method (FEM) has 

been the standard tool for this kind of calculations, but it is 

also having some shortcomings which are mentioned below: 

1. When dealing with large deformation problems, as 

elements in mesh becomes extremely skewed or 

compressed there will be considerable loss in 

accuracy of results. 

2. Such distorted elements will not coincide the 

original mesh lines, which creates difficulties 

during modeling with such elements. 

3. Consumes major time of analyst using FEM 

packages. It becomes a major component of the 

cost of a simulation project. The concern is more 

the manpower time, and less the computer time. 

4. As FEM is essentially based on continuum 

mechanics, in which the elements formulated 

cannot be broken it is very difficult to simulate the 

breakage of material into a large number of 

fragments. 

5. Post processing techniques are required to 

 achieve smooth stress distribution in 

structural problems because of Discontinuous 

secondary variables like stresses across element 

boundaries. [1,9] 

To overcome the above difficulties mesh 

free methods have been developed which do not require a 

mesh to discretize the problem and any connectivity 

between nodes. Mesh free methods are having following 

advantages as compared to finite element method. 
1. There is no need to provide in advance any 

information about the relationship of the nodes, so 

it provides flexibility in adding and deleting nodes 

whenever and wherever needed. 

2. It saves a lot of human effort as nodes are created 

by fully automated manner with the help of 

computers. 

3. The solution so created by mesh-free methods is 

entirely in terms of set of nodes. 

4. As connectivity can change in run time in mesh 

free methods, it can be suitable for very large 

deformation also. [ 1,9] 

In spite of having many advantages it is to 

be questionable that why mesh free methods are not 

commercialized till now as compared to classical grid 

based method like FEM. this is because mesh free methods 

are in developing stage and the following drawbacks are 

still to be un- resolved. 

1. Mesh free shape functions require highly accurate 

integration scheme to apply because mesh free 
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shape functions are the rationale functions unlike 

the grid base shape functions. 

2. As shape functions of mesh free methods are not 

interpolants but approximants, the treatment of 

essential boundary conditions is not straight 

forward as in traditional mesh based methods. 

[9,110] 

The finite element method for the 

modeling of complex problems in applied mechanics and 

related fields are well established, but the reliance on the 

method of mesh leads to complications for certain classes 

of problems. The basic difference between FEM and mesh 

free methods can easily be understood by following 

procedural chart [1, 110] : 

 

 
 

 

Figure 1.1 Basic Procedural difference in Grid 

based and Mesh free method: 

There have been a number of mesh free methods 

developed so far to overcome the difficulties encountered in 

grid based methods. The common procedural steps followed 

by almost all such mesh less methods are briefed in the 

following chart [9, 110]: 

 

 
 

Figure 1.2 Basic procedural steps 

 

1.1 Classification of Mesh free methods:  

 

A recent strong interest is focused on the development 

of the next generation of computational methods — mesh 

free methods, which are expected to be superior to the 

conventional grid-based FDM and FEM for many 

applications. The key idea of the mesh free methods is to 

provide accurate and stable numerical solutions for integral 

equations or PDEs with all kinds of possible boundary 

conditions with a set of arbitrarily distributed nodes (or 
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particles) without using any mesh that provides the 

connectivity of these nodes or particles. These meshfree 

methods with their approximation techniques are listed in 

the below table [1,19,20]:  

 

Table 1.1 

 

METHODS REFERENCES Methods of 

approximation 

Smoothed Particle 

Hydrodynamics(SPH) 

Lucy and Monaghan 

1977 etc.  

 

Integration 

representation  

 

Finite Point Method Liszka and Orkisz, 

1980; onate et 

al.,1996,etc. 

Finite 

difference 

representation 

Diffuse Element 

Method (DEM) 

Nayroles et al. , 1992  

 

Moving Least 

Square (MLS) 

approximation 

and Galerkin 

method  

 

Element Free 

Galerkin (EFG) 

Method 

Belytschko et al. , 

1994, 1996, 1998 

 

MLS 

approximation 

and Galerkin 

method  

 

Reproduce Kernel 

Particle 

Method(RKPM) 

W. K. Liu et al., 1995-

97 

 

Integral 

representation 

and Galerkin 

method  

 

HP-Cloud Method Duarte and Oden, 1996  

 

MLS 

approximation, 

Partition of 

Unity (PU)  

 

Free Mesh Method Yagawa and 

Yamada,1996;1998,etc. 

Galerkin 

method 

Meshless Local 

Petrov 

Galerkin(MLPG) 

Method 

Atluri and Zhu 1998-

99 

 

MLS 

approximation, 

Petrov-

Galerkin 

method  

 

Point Interpolation 

Method(PIM) 

G. R. Liu et al. 1999-

2001 

 

Point 

interpolation 

(radial and 

polynomial 

basis), Petro-

Galerkin 

method  

 

Meshfree Weak-

Strong Form (MWS)  

 

Liu and Gu in 2002-

2003 

 

MLS, PIM, 

radial PIM, 

Collocation 

and Petrov-

Galerkin  

 

 

II. Mesh free methods coupled with other methods: 

 

All domain type and boundary type mesh free methods 

are having their own advantages and drawbacks. Recently 

the attempts have also been made to couple such methods to 

have the advantages of both methods. There is an additional 

motivation to couple meshfree methods that are formulated 

using moving least squares (MLS) shape functions and 

meshfree methods that are formulated using point 

interpolation method (PIM) shape functions or finite 

element (FE) shape functions. The objective of such 

coupling is to simplify the basic procedure of imposing 

essential boundary conditions. A number of combined 

methods have been formulated such as: EFG/BEM, 

EFG/HBEM, MLPG/FEM/BEM, EFG/FEM [44,89,94] 

 

2.1 Element Free Galerkin (EFG) Method: 

 

This method is based on moving least square 

approximations (MLS), initially presented by Lancaster and 

Salkauskas. Element Free galerkin method was first 

employed by Nyroles et al. for the development of Diffuse 

Element method. Belytschko et al. proposed Element Free 

Galerkin method by modifying and refining the DEM 

method. In the EFG method, the problem domain  is 

discretized by a set of nodes scattered in the problem 

domain and on the boundaries of the domain. The MLS 

approximation procedure is then used to approximate the 

displacement field  at a point of interest within the 

problem domain using the nodal parameters of displacement 

at the nodes in the support domain of the point. The 

approximate solution obteied then is used to have 

displacement and stress analysis. The major features of EFG 

are summerised as: 

 Moving least square method is used to create shape 

functions  

 Galerkin Weak Form creates discretized equations.  

 A background mesh is created to carry out 

integration to obtain the system matrices.  

 

The mesh is solely used for the purpose of integration which 

is completely independent of the number of field nodes or 

its density. [1,109,110,] 

 

2.2 Formulation of EFG: 

 

In this section the generalized formulation of 

Element Free Galerkin method has been presented with 

MLS approximation. In meshless approximation the 

approximation function can be expressed as,  

[1,21,29,51,108,110] 

 

 
                                                                                            (1) 

Where P_i (x               i      i       i             

m,and  a_i (x) are non-constant coefficients that are 

functions of spatial coordinates x. The coefficients a_i (x) 

are computed by performing a minimization of the 

difference between local approximation and the nodal 

values. 
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                                    (2) 

Where w(x-x_I ) is called weight function With the 

solution of a_i (x), the final MLS approximation can be 

obtained as 

 
                                                                              (3) 

Wh    Φ_I (x  i   h   h p       i  ,       i   h  

number of local nodes. 

The nodal discrete equations are obtained using the 

constrained galerkin weak form using lagrange multiplier 

and then the governing matrices for boundary condition, 

stiffness, force and displacement can be obtained. Such 

matrices for two dimensional problems are listed below: 

 

                 
                                                                              (4) 

 
                                     (5) 

 
(6) 

 
(7)              

Where, 

 
                        (8) 

 

 
(9) 

 

 
(10) 

 

These relations are for plane stresses. In which a 

comma designates a partial derivative with respect to the 

indicated spatial variable; E and      Y   g’              

P i   ’     i     p   iv  y. The above discrete nodal 

equations are assembled into global matrix: [1,2,65] 

 

 
(11) 

 

The essential boundary condition has been imposed 

and the global matrix is solved to obtain nodal displacement 

parameters. 

 

 

2.3 EFG- Application: 

 

There are numerous improvements has been 

witnessed since the appearance of Element Free Galerkin 

method. The application of EFG has spanned various areas 

of Engineering and has established as dependable solution 

technique. The various areas of application of EFG covers 

crack problems, static and free vibration, buckling and post 

buckling, non- linear analysis and transient dynamics of 

structure: [  

 

2.3.1 Crack Problems:  

 

The most earlier application of EFG is in crack 

growth problems. The EFG method with linear MLS 

approximations was used to study the two-dimensional 

elastostatic and elastodynamic fracture problems 

[3,4,10,11,14,16,] , such as crack growth from a fillet, crack 

propagation in concrete, and edge-cracked plate under 

impact loading. Krysl and Belytschko [23]conducted the 

modelling of arbitrary three-dimensional dynamically 

propagating cracks in elastic bodies using EFG with explicit 

time integration. The several examples like simulation of 

mixed-mode growth of centre through crack in a finite plate, 

mode-1 surface breaking penny shaped crack in a cube, 

penny shaped crack growing under general mixed-mode 

conditions, tortion-tension rectangular bar with centre-

through crack. It is found that, compared to FEM, the EFG 

method is more suitable for crack problems because it does 

not require remeshing and avoids the need for excessive 

refinement near the crack front. A boundary element free 

method, a variant of the EFG method, was employed for 

fracture analysis of 2D piezoelectric solids and the 

interaction between collinear interfacial cracks. Some crack 

problems were also dealt with by using modified EFG 

method [37,38,48,58,63,87,]. Recently, Sun et al. [88] 

presented a meshfree simulation of cracking and failure of 

structures by combining the EFG method and a cohesive 

segment method, and Zhang et al. [90] investigated the 2D 

fracture problems via an improved element-free Galerkin 

method. A boundary element free method, a variant of the 

EFG method, was employed for fracture analysis of 2D 

piezoelectric solids [77] and the interaction between 

collinear interfacial cracks [86] 

 

2.3.2Static Analysis of Structures: 

 

EFG was first applied by Krysl and Belytschko [12] to 

the analysis of thin plates for bending. The thin plate theory 

(or Kirchhoff plates) was employed and the boundary 

conditions were enforced by Lagrange multipliers. Gauss 

integration was performed on a background cell to evaluate 

the stiffness matrix. They have considered the plates of 

different dimensions and different loading conditions and 

the investigation was made for the effect of regular and 

irregular nodal distribution on the accuracy of solutions. 

Krysl and Belytschko has also conducted the analysis of thin 
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shells using EFG method[14]. The geometrically exact 

theory of shear flexible shells was adopted and appropriate 

adjustments were made to account for the Kirchhoff–Love 

hypothesis. The membrane locking which appears in the 

numerical model was alleviated by enlarging the domains of 

influence of the EFG nodes for the quadratic basis, and it 

was removed completely by using quartic polynomial basis. 

Noguchi et al[34] extended EFG to the analysis of three-

dimensional thin shell structures. The geometry of curved 

surface was expanded in a two dimensional space by using a 

mapping technique, and the nodes were generated on this 

two-dimensional mapped space. The bi-cubic and quartic 

basis functions were adopted for the construction of shape 

functions to eradicate shear and membrane locking. The 

alternative implementation of EFG method using a selective 

reduced integration formulation to remove volumetric 

locking in plates has been developed by Dolbow and 

Belytschko[25]. The shear locking was also investigated by 

Huerta and Fernan dez-Mendez[26], Kanok-Nukulchai et 

al[45]., and Askes et al [27].  

 

Laminated composite plates and beams with 

piezoelectric patches using the EFG method were analyzed 

by Liew et al[50]. The first-order shear deformation plate 

theory was employed and the full transformations method 

was used to impose essential boundary conditions. The static 

shape control of piezo-laminated composite beams and 

plates was studied, and the influence of stacking sequence 

on the change in shapes was examined. The demonstrated 

numerical examples by EFG produces accurate solutions in 

analyzing the shape control of piezo laminated composite 

beams and plates. Peng et al.[99]carried out the bending 

analysis of un-stiffened and stiffened folded plates using the 

EFG method. More applications of the EFG method 

encompass the analyses of laminated folded plate structures 

[76], stiffened corrugated plates [72,81,84,97], functionally 

graded plates [69,91,103], and prestressed concrete beams 

[65] . 

 

Bobaru and Mukherjee[47] presented a formulation for 

shape optimization of linear thermo elastic solids using the 

EFG method. They investigated the influence of the number 

of design parameters and observed that the EFG can give 

better results with a smaller number of design parameters 

than FEM. They also performed the shape sensitivity 

analysis and shape optimization in planner elasticity were 

also performed by the same author [41].  

 

2.3.3 Buckling and Free Vibrations: 

 

The elastic buckling behavior of stiffened and un-

stiffened folded plates under partial in-plane edge loads was 

studied by Liew et al.[73] The formulation was based on the 

first-order shear deformation theory and element-free 

Galerkin method. The stiffness and initial stress matrices of 

the flat plates as determined by the mesh-free Galerkin 

method were superposed to obtain the stiffness and initial 

stress matrices of the entire folded plate. The solutions show 

the EFG method has a good accuracy and convergence rate. 

Liew et al. also conducted the buckling analysis of 

corrugated plates [74] and stiffened structures[79]. Zhao et 

al. [102] investigated the mechanical and thermal buckling 

response of functionally graded plates using an element-free 

kp-Ritz method. The first-order shear deformation plate 

theory was adopted to account for the transverse shear 

deformation and the shear locking was eliminated by using a 

stabilized nodal integration method. Also the effects of 

volume fraction exponent on the buckling response of 

functionally graded plates were examined.   

 

Liu and Chen [39,57] studied the vibration 

response of the thin plates of complicated shape by using 

EFG method. Liu et al.[55] investigated the free vibration of 

thin shells structures. A free vibration analysis of folded 

plates was provided by Peng et al.[83] using the first-order 

shear deformation theory and the EFG method, and free 

vibration of sandwich beams with functionally graded core 

was investigated by Amirani et al.[101]  

 

2.3.4 Non Linear Analysis: 

 

In non linear analysis of structures Meshless methods 

have demonstrated great advantages and promising potential 

because they are flexible in handling discontinuities and 

large deformation problems, in which severe mesh distortion 

usually occurs when using FEM. Belinha and Dinis 

[82]conducted the non-linear analysis of laminated plates 

using element-free Galerkin method, and Ren et al[46]. 

performed the modelling and simulation of superelastic 

behaviours of shape memory alloys. The EFG method was 

also employed by other researcher for the non-linear 

analysis of folded plate structures[80], lower bound 

shakedown analysis of structures made of elastic-perfectly 

plastic material[96], non-linear wave propagation in 

damaged hysteretic materials[100], and simulation of and 

non-linear dynamic fracture[85]. In additional to the 

aforementioned meshless methods, other mesh-free methods 

that are based on EFG have been developed[43,70,71,75]. 

Additional application areas of meshless methods include 

transient analysis[52], probalistic mechanics and 

reliability[43], explicit dynamic analysis[32], linear and 

non-linear dynamic analysis of solids[68]. 

 

III. EFG Coupled With Other methods: 

 

Element Free Galerkin (EFG) methods are methods 

for solving partial differential equations with the help of 

shape functions coming from Moving Least Squares 

Approximation. The EFG-method is more flexible than the 

Finite Element (FE) method, since it requires only nodal 

data and no element connectivity is needed. Because the 

EFG-method is computationally expensive, combinations of 

the EFG-method and the FE-method are considered.  

 

For Moving Least Squares Approximation (MLSA) 

at each point of the domain the linear system should be 

solved. Moreover, when MLSA-shape functions are used in 

an implementation of a weak formulation. a dense 

integration pattern is necessary to get accurate values for the 

resulting linear system. Hence, the Element Free Galerkin 

(EFG) method is computationally expensive. Therefore, it is 

more convenient to make use of EFG only on a part of the 

domain where one wants to achieve an accurate 

approximation of the solution. And to make use of the Finite 
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Element (FE) method for the remaining part of the domain. 

[11]  

 

3.1 Coupling Procedures of Meshfree Methods with 

FEM: 

 

Considerable research in meshfree methods has 

been devoted on inherent difficulties like consistency, 

stability and Dirichlet boundary conditions. While these 

issues are not yet completely resolved, viable methods are 

available. In addition, up to now, the computational effort 

for meshfree methods is higher than for finite elements. 

Hence, as long as no robust and, at the same time, efficient 

formulation for meshfree particle methods is available, it 

seems beneficial to discretize only certain parts of the 

domain with particles and the rest with finite elements. 

[1,89,110 ] 

 

Attaway et al[5]. has proposed one of the coupling 

procedure for meshfree methods and finite elements. They 

developed a master-slave coupling for fluid structure 

interactions; the fluid was discretized with particles, the 

structure was modelled with finite elements. Their algorithm 

is based on a common master slave coupling. A similar 

approach was proposed by Johnson  and Johnson et al.[6] In 

addition, they developed transition elements where particles 

are fixed to FE nodes. This allows for a rigid coupling in the 

sense that tensile and shear forces are transferred through 

the interface.  

 

Liu et al. [17] showed how to couple the 

reproducing kernel particle method (RKPM) with FEM by 

modifying the shape functions in the transition area for both 

RKPM and FEM. They applied the reproducing condition 

also in the transition area.  

 

T. De Vuyst, R. Vignjevic and J.C. Campbell [67] 

developed a coupling algorithm for EFG and FEM by a 

mixed interpolation in the transition domain, where FE 

nodes are substituted by particles and connected via ramp 

functions to the EFG nodes so that continuity and 

consistency are preserved on the interface elements. They 

have also extended this method for a nodal integration of 

EFG. The only drawback of this method is, derivatives are 

discontinuous along the interface.  

 

One more method for coupling EFG and FEM with 

Lagrange multipliers for elasto-static problems is presented 

by Hegen.[15] In his approach, the substitution of FE nodes 

by particles is not necessary. Rabczuk and Belytschko[64] 

extended this idea to nonlinear problems and applied it to 

deformable interfaces. Karutz [35] showed convergence of a 

similar approach to model crack propagation problems using 

an adaptively generated EFG domain.  

 

Belytschko et al.[61] also invented a coupling with 

Lagrange multiplier, where finite elements and particles 

overlap. They called this method bridging domain coupling 

method and successfully applied it to atomic and multiscale 

simulations. Another bridging domain coupling was before 

proposed by Wagner and Liu [59] to couple atomic and 

continuum simulations. While the bridging domain coupling 

in suffered from spurious wave reflections in certain cases, 

Kadowaki and Liu [66] introduced some wave reflection 

algorithms to remove this drawback.   

 

SPH-FE coupling by extending the SPH domain 

onto the FE mesh was proposed by Sauer[31]. In this 

method different possibilities for exchanging forces between 

finite element nodes and particles were shown. This 

approach was also used to convert elements into particles. 

 

The main differences to most above mentioned 

methods is that they used a strong −         p i g.  

 

Prof. W.K. Liu and S. Li [53]developed a hybrid 

method called reproducing kernel element method (RKEM) 

which exploits advantages of both, meshfree and finite 

element methods, e.g. the RKEM shape functions fulfill the 

Kronecker delta property. A method called moving particle 

finite element method was developed almost simultaneously 

by Hao et al.[61] While most hybrid FE-meshfree methods 

are at least first order in convergence, Liu et al. showed that 

their RKEM method maintains the usual convergence rate. 

Wagner and Liu and Han et al [54] have proposed Another 

method to maintain the usual convergence rate by 

hierarchical enrichment. The other good overviews about 

meshfree and particle methods, their coupling to finite 

elements with impressive examples can be found in Li and 

Liu. [62] 

 

In the following articles the coupling procedure for 

EFG and FEM has been explained: 

 

3.2 Compatibility coupling: Coupling with Lagrange 

multipliers: 

 

The coupling approach where no ramp functions 

are needed was first developed by Hegen et al.[7] Rabczuk 

and Belytschko[64] used this approach to couple EFG nodes 

and finite elements to model the bond behavior in reinforced 

concrete beams in statics. In this method, relative 

displacements between the particles and the elements are 

allowed. The simplified version of the bridging domain 

coupling was developed by Xiao[49] named edge-to-edge 

coupling, which is an explicit method based on Lagrange 

multipliers. The main difference is that the FE and particle 

domain do not overlap which simplifies the method 

enormously. However, for wave propagation problems, the 

bridging domain coupling is more accurate. Coupling via 

lagrange multipliers has been reviewed in the following 

articles:  

 

 
Figure3.1 : Coupling of Particle and Finite Elements [78] 

 

For the static case, the potential to be minimized is 
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(12) 

Where W^int  is the internal and W^ext is the 

external energy. The last term on the RHS is the constraints. 

In the dynamic case, an inertia term is added. The Lagrange 

multipliers are          y λ¸    g= ^FE-u^p is the gap of 

the particle and the finite element domain along the common 

boundary as illustrated in figure The Lagrange multipliers 

are located at the particle positions and are: 

 

 
                                                                             (13) 

The Lagrange multiplier estimates are placed at the 

particle position and finite element shape functions are used 

    i     iz   h  L g   g      ip i    i    δλ: 

 

 
                               (14) 

 

Note that for the interpolation in the above equation, the 

position of the Lagrange multipliers in the local element 

coordinate system has to be known. The test and trial 

functions are: 

 

 
(15) 

 
(16) 

And  

 

 
(17) 

 

 
(18) 

Where S is the set of nodes in the particle model. 

 

The derivatives of W^int and W^ext  with respect to u 

are the internal and external forces, respectively. The 

additional forces  λ ∂g/∂       i         i   ions of the 

Lagrange multipliers[64]. To obtain the discrete system of 

nonlinear equations Belytschko et al.[13] used the Taylor 

Expansion series for linearization. Substituting the test and 

trial functions, system equations can be obtained and 

matrices for force, stiffness also being obtained. The 

Lagrange multipliers are approximated to 

 

           
(19) 

 
(20) 

Wh         h  Λ  h  FE  h p       i         h    . 

Finally we obtain with the traction and displacement 

continuity the equation of motion. 

 

 
(21) 

With 

 

 
(22) 

 
(23) 

 
(24) 

And   

 
(25) 

 
(26) 

 
(27) 

 
(28) 

Where the superscript designates either the particle or 

FE domain. Note that we used here a consistent mass 

matrix.  

We can couple other mesh free method also with FEM 

by using hydrodynamic coupling , master slave couplings, 

coupling via ramp functions, compatibility coupling, 

bridging domain coupling and hybrid coupling. Different 

coupling methods have some typical application, so they 

should be comparable on application bases. 

[18,27,28,30,33,40,56,60,78,106,107] 
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IV Conclusion 

 

Mesh less methods and their applications in the 

analysis of engineering structures have been reviewed, with 

emphasis on the methods originating from EFG. The aim of 

this survey is to provide a general description of the 

developments and applications of  Element Free Galerkin 

method. It has been demonstrated that the meshless methods 

are able to handle a variety of engineering problems, and 

offer great advantages over conventional numerical 

methods, especially in dealing with discontinuities and large 

deformation problems. However, there are still some 

challenges remaining. For three-dimensional modeling of 

structures, especially for thin shell structures, the 

computational cost is still too expensive. [1, 95,105,110] 

 

The presented paper may consider as a quick view 

to the Element free galerkin- Mesh Free method, for the 

students who wanted to have research in this field. In that 

context one may find the complete overview of EFG, 

methodology, Application etc. regarding EFG method. The 

paper also gives some brief idea about combining Mesh free 

method with conventional FEM, to get the better use of both 

the methodology. [4, 6, 8, 9, 12, 22] 
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