

VISION BASED MOBILE LOCATION TRACKING AND CONTROLLING SYSTEM

1 Yuvaraj N.N, 2 Yogita Sham Jagtap, 3 Seema Harkar

1,2,3 Computer Engineering department, DR. Dy Patil School of Engineering Academy. Ambi, talegaon, pune.

Abstract at first the GPS unceasingly takes input file from the satellite and stores the latitude and meridian. With the assistance of propose system we'll track our mobile. In propose system if we tend to need to trace mobile location then we'd would like to send a message to our device, by that it gets activated. Once application gets activated it takes the present latitude and meridian positions values from the GPS and sends a mail to the actual email id that's predefined at registration. Propose system may well be wont to track children current location.

Location Sensing, Energy potency, Location-Based Applications,Smartphone.

I. INTRODUCTION

With dynamic times, the mobile technology has modified tons and at intervals the previous range of years we've got seen the arrival of varied new varieties of gadgets at intervals the variability of Smartphone, camera-phone, golem and pill phones. In fact, the phonephone set trade has turned from straightforward budget handsets to trendyhigh finish mobile phones. Today's device is variety of everything it's stylish, innovative, appealing, high-performing, durable, stylish and multitasking. Latest gadgets unit of measurement usually used for various functions like browsing mobile, internet, collaborating in games, emailing, and blogging, messaging, GPS, YouTube, Google search, Gmail and further. the planet Positioning System (GPS) may even be a location system supported a constellation of twenty four to thirty two satellites orbiting around the earth at altitudes of eleven,000 miles. every satellite is supercharged by the Sun via its device. In its earlier years, GPS was developed at intervals the u. s. for military use, for the Department of Defense (DOD). Through the years of development and improvement, we've got advanced the employment of GPS to trailing our precise location worldwide and as a navigation aiding tool for civilian usage.

Currently, it's United Statesed as navigation tool device to help North yank country find the shortest route to our destination. can|we will|we unit of measurement in an exceedingly position to} use GPS to appear out lost mobile or folks will track to their youngsters location.

II. LITERATURE SURVEY

According to literature survey after studying different IEEE paper, collected some related papers and documents some of the point discussed here:

1. Paper Name: Multi-satellite Formation control for Remote Sensing Applications using Artificial Potential Field and adaptive Fuzzy sliding Mode control

Author: RanjithRavindranathan Nair, LaxmidharBehera, Vinod Kumar, Mo Jamshidi Paper Explanation: The formation management of satellites for remote sensing applications has received goodish attention throughout the past decade. This work deals with the event of a formation management strategy for the circular formation of a bunch of satellites. throughout this paper, artificial potential field technique is employed for path developing with, and sleek mode management (SMC) technique is employed for developing with a sturdy controller. A fuzzy intellectionmechanism is employed to cut back the chattering development inherent at intervals the standard SMC. associate adjustive standardisation formula is also derived supported Lyapunov stability theory to tune the fuzzy parameter. The projected fuzzy-SMC-based technique is meant to catch au courant the modeling uncertainties existing in sensible applications. The results of simulations in deep trouble a bunch of 5 satellites creating a circular formation ensure the soundness and robustness of this theme.

2. Paper Name: Optimizing sensing element Locations during a} very Multisensor Single-Object chase System

Author: shrub Cashbaugh, patron saint Kitts Paper Explanation: trailing a mobile object presents several challenges, notably once the tracked object is autonomous or semiautonomous and should move erratically. the use of autonomous mobile sensing element systems permits for larger chance to trace the mobile object however doesn't forever yield associate estimate of the tracked object's location that minimizes the estimation error. This paper presents a way to optimize the sensing element system locations, given one object and a bunch type of sensing element systems, to

understand a position estimate that minimizes the estimation error. The trailing stations might then be controlled to understand and maintain this optimum position, below position constraints. the thought predicts that given 'n' sensing element systems and one object there's a sensing element system configuration that may yield a foothold estimate that minimizes the estimation error. A mathematical basis for this theory is given and simulation and experimental results for 2 and 3 sensing element system cases unit shown as an example the effectiveness of the thought at intervals the laboratory.

3. Paper Name: constrained Extended Kalman Filter for Target tracking in Directional sensor Networks

Author Name: Sha wen, ZixingCai, Xiaoqing Hu Paper Application: The target trailing disadvantage in directional sensing element networks (DSNs) is attracting increasing attention. in distinction to the standard position sensing element, a directional sensing element encompasses a special angle of scan. it'll give direction information instead of simply the sensing signal activity with relevancy the detected target. this trailing approaches in DSNs forever severally consider the direction and activity information; they hardly promise the trailing performance of minimum variance. throughout this paper, the planet of scan of directional sensing element is approximated to a rectangle; in and of itself the affected space throughout that the target is certainly to be is made. Then, the target trailing disadvantage is developed as a affected estimation disadvantage, and a affected extended Kalman filter (CEKF) trailing formula integration the direction and activity information is presented; its structural and maths properties unit strictly derived. it's tested that CEKF is that the linear unbiased minimum variance delicate, and CEKF will yield a smaller error variance than the free ancient extended Kalman filter victimization entirely sensing element measurements. Simulation results show that the CEKF has superior trailing performance for directional wireless networks.

4. Paper Name: Experiments with Underwater robot Localization and tracking

Author: Peter Corke, Carrick Detweiler, Matthew Dunbabin, archangel Hamilton, Daniela Rus, Iuliu Vasilescu Paper Explanation: This paper describes a singular experiment throughout that a combine of terribly totally different strategies of underwater mechanism localization square measure compared. the primary technique depends on a geometrical approach throughout that a mobile node moves inside a field of static nodes, and every one nodes square measure capable of estimating the vary to their neighbors acoustically. The second technique uses visual odometry, from stereo cameras, by integration scaled optical flow. the essential algorithmic principles of every localization technique square measure pictured . we've an inclination to tend to along gift experimental results scrutiny acoustic localization with GPS for surface operation, and a comparison of acoustic and visual strategies for underwater operation.

5. Paper Name: On a decentralized active sensing strategy exploitation mobile sensing element platforms in an exceedingly network

Author: T. H. Chung, V. Gupta, J. W. Burdick, R. M. Murray Paper Explanation: throughout this paper, we've an inclination to tend to contemplate the matter of active sensing victimization mobile nodes as a sensing element network to estimate the state of a dynamic target. we've an inclination to tend to propose a gradient-search-based localized formula that demonstrates the advantages of distributed sensing. we've an inclination to tend to then examine the task of trailing multiple targets, and address it via an easy extension to our formula. Simulation results show that our straightforward localized approach performs quite well and finally ends up in attention-grabbing cooperative behavior.

6. Paper Name: Dynamic positioning of beacon vehicles for cooperative underwater navigation

Author: Alexander Bahr, John J. Leonard, Alcherio Martinoli Paper

Explanation: Autonomous Underwater Vehicles (AUVs) square measure used for associate ever increasing vary of applications because of the maturing of the technology. because of the absence of the GPS signal underwater, the rightestimation of its position is additionally a challenge for submerged vehicles. One promising strategy to mitigate this disadvantage is to use a bunch of AUVs wherever one or an excellent deal of assume the role of a beacon vehicle that encompasses a extremely correct position estimate because of a contemporary navigation suite or frequent egress. These beacon vehicles broadcast their position then the remaining survey vehicles will use this position data and intra-vehicle ranges to update their position estimate. The effectiveness of this approach powerfully depends on the maths between the beacon vehicles then the survey vehicles. The trajectories of the beacon vehicles have to be compelled to be compelled to so be planned with the goal to cut back the position uncertainty of the survey vehicles. we've an inclination to tend to propose a distributed formula that dynamically computes the regionally optimum position for a beacon vehicle victimization entirely data obtained from broadcast communication of the survey vehicles. It doesn't would love previous data relating to the survey vehicles' flight and might be used for any cluster size of beacon and survey vehicles.

7. Paper Name: Cluster space Specification and control of Mobile Multi-robot Systems

Author: christopher A. Kitts, Ignacio Mas

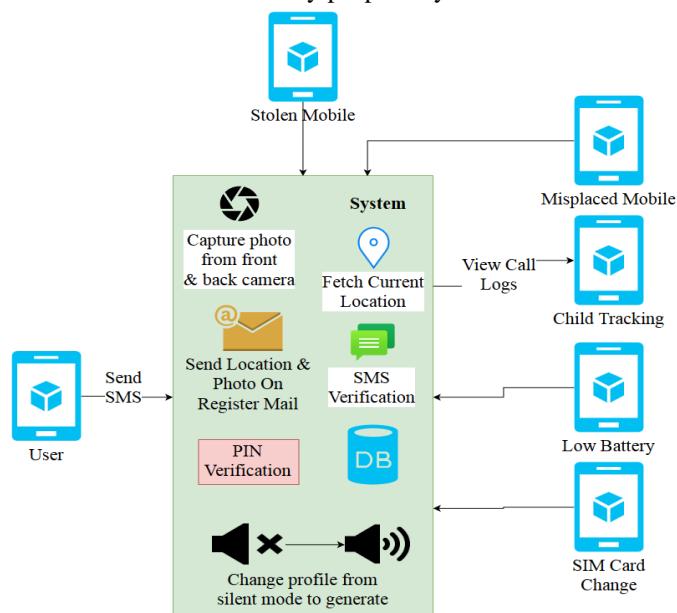
Paper Explanation: The cluster house state illustration of mobile multi-robot systems is introduced as the simplest way of facultative enlarged management of mobile multi-robot systems. A abstract framework is projected for the choice of acceptable cluster house state variables for degree n-robot system, the event of formal mechanics that associate the cluster house state variables with robot-specific variables, then the implementation of a cluster house

system vogue. The cluster house approach is then bulletproof for samples of two- and three-robot clusters consisting of differential drive robots operational throughout a} terribly plane. In these examples, we've got a bent to tend to demonstrate cluster house variable choice, review the essential kinematic relationships, and gift experimental results that demonstrate the power of the systems to satisfy management specifications whereas permitting one operator to simply specify and supervise the motion of the clusters.

8. Paper Name: Dynamic control of Mobile Multi-robot Systems: The Cluster space Formulation

Author: Ignacio Mas, christopher A. Kitts

Paper Explanation: The formation management technique cited as cluster house management promotes simplified specification and observation of the motion of mobile multi-robot systems of restricted size. Previous paper has established the abstract foundation of this approach associate degreed has through an experiment verified and valid its use for numerous systems implementing kinematic controllers. throughout this paper, we've got a bent to tend to shortly review the definition of the cluster house framework and introduce a replacement cluster house dynamic model. This model represents the dynamics of the formation as a full as a operate of the dynamics of the member robots. Given this model, generalized cluster house forces is applied to the formation, and a Jacobian transpose controller is implemented to rework cluster house compensation forces into robot-level forces to be applied to the robots at intervals the formation. Then, a nonlinear model-based partition controller is projected. This controller cancels out the formation dynamics and effectively decouples the cluster house variables. laptop personal computer simulations and experimental results victimization 3 autonomous surface vessels and 4 land rovers show the effectiveness of the approach. Finally, sensitivity to errors at intervals the estimation of cluster model parameters is analyzed.

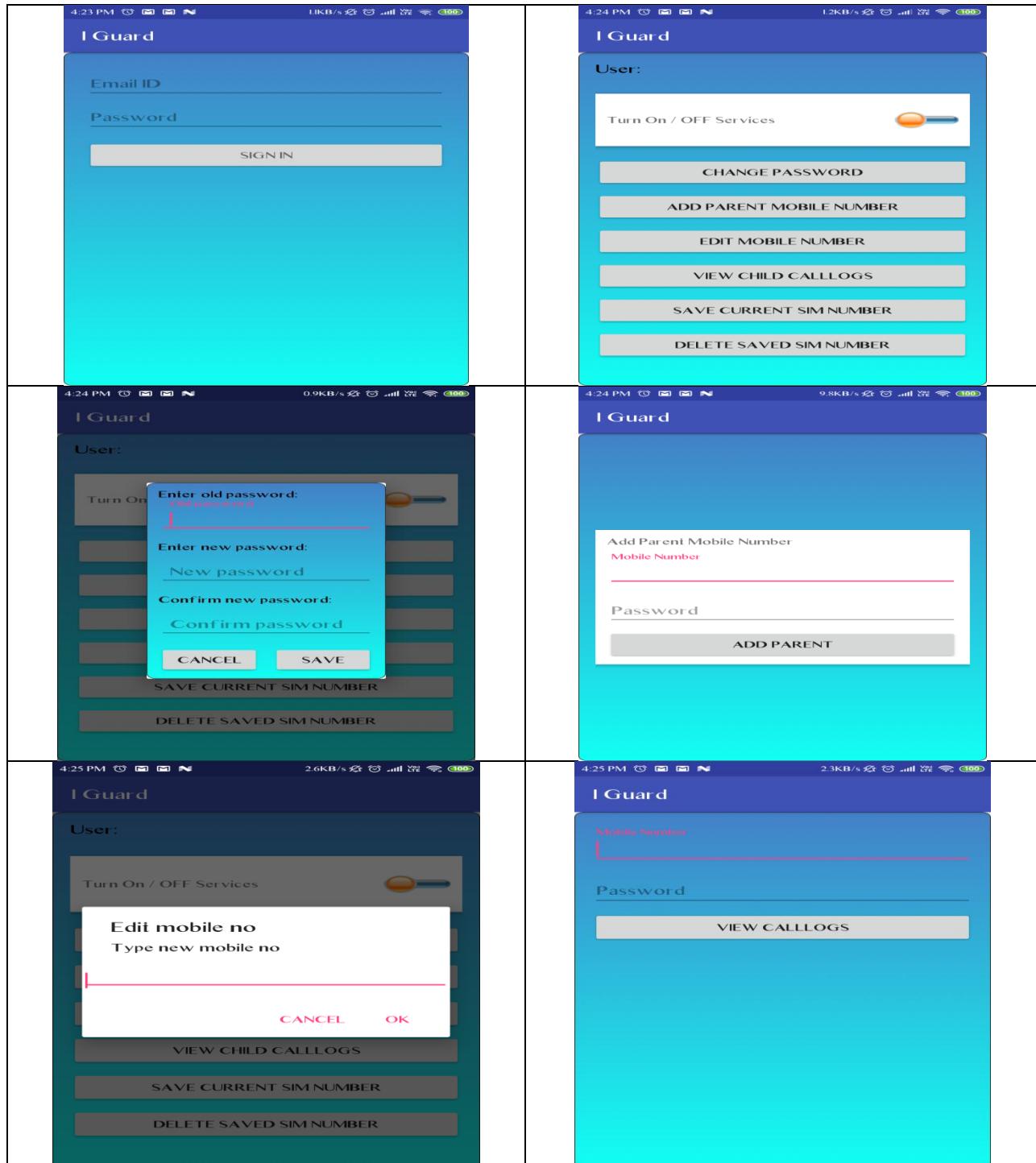

9. Paper Name: Quadrotortestbed development and preliminary results

Author: bush Cashbaugh, Anne Mahacek, Saint guardian Kitts, Christian Zempel, Alicia Sherban

Paper Explanation: Cluster management has been explored with kind of platforms at municipality University's AI Systems Laboratory, however has not been totally explored for aerial robots. Building on the muse of previous work by this laboratory, a team of scholars developed degree aerial testbed at National aeronautics and area Administration Ames for Parrot's AR.Drone 1.0s. This setup was designed to accommodate a try of and 3 mechanism configurations, beside each aerial and land-based robots. This publication discusses the testbed setup and presents form of the preliminary results achieved victimization this testbed

PROPOSED SYSTEM

In propose system user can have main three choices to travel looking or track their mobile location. If use forget their mobile in home then user can send preformatted SMS to their phone then mobile can begin ringing. If user forgot their phone outside of home then he will track by propose system



SYSTEM DESIGN

ADVANTAGES

- Easy way to find mobile location
- Save time and efforts to find mobile phone

RESULT

CONCLUSION

Propose system is anti-theft mobile following application. This application provides sturdy security to Smartphone once it's lost or taken by felon. It offers the case what is more as photos of felon to user on emails id provided by user oldsters will just track their children's locations. In future user will begin net of mobile by effort SMS.

REFERENCES

- [1] C. Kitts and M. Egerstedt, "Design, control, and applications of realworldmultirobot systems," *IEEE Robot.Autom. Mag.*, vol. 15, no. 1, p. 8, Mar. 2008.
- [2] J. Cashbaugh and C. Kitts, "Optimizing sensor location in a multisensory single-object tracking system," *Int. J. Distrib. Sensor Netw.*, vol. 11, no. 7, pp. 1–15, Jul. 2015.
- [3] P. Corkeet al., "Experiments with underwater robot localization and tracking," in *Proc. IEEE Int. Conf. Robot. Autom.*, Rome, Italy, 2007, pp. 4556–4561.
- [4] S. Wen, Z. Cai, and X. Hu, "Constrained extended kalman filter for target tracking in directional sensor networks," *Int. J. Distrib. Sensor Netw.*, vol. 11, no. 5, pp. 1–13, May 2015.
- [5] R. R. Nair, L. Behera, V. Kumar, and M. Jamshidi, "Multisatellite formation control for remote sensing applications using artificial potential fields and adaptive fuzzy sliding mode control," *IEEE Syst. J.*, vol. 9, no. 2, pp. 508–518, Jun. 2015.
- [6] J. Curcioet al., "Experiments in moving baseline navigation using autonomous surface craft," in *Proc. OCEANS, Washington, DC, USA*, 2005, pp. 730–735.
- [7] A. Bahr, J. Leonard, and M. Fallon, "Cooperative localization for autonomous underwater vehicles," *Int. J. Robot. Res.*, vol. 28, no. 6, pp. 714–728, Jun. 2009.
- [8] A. Bahr, J. Leonard, and A. Martinoli, "Dynamic positioning of beacon vehicles for cooperative underwater navigation," in *Proc. IEEE Int. Conf. Intell. Robots Syst.*, Vilamoura, Algarve, 2012, pp. 3760–3767.