

# International Journal of Advance Research in Engineering, Science & Technology

e-ISSN: 2393-9877, p-ISSN: 2394-2444 Volume 4, Issue 5, May-2017

# Detection of Plant Diseases with the Help of Image Processing Technique

Mumpy Bhajipale<sup>1</sup>, Sonali Kad<sup>2</sup>, Neha Jagdale<sup>3</sup>, Akash Tiwari<sup>4</sup>, Prof. Pradeep Laturkar<sup>5</sup>

1,2,3,4DY. Patil School Of Engineering And Technology, Lohegaon, Pune

Abstract — The uploaded photos captured by the mobile phones unit of measurement processed at intervals the remote server and conferred to an skilled cluster for his or her opinion. Portable computer vision techniques unit of measurement used for detection of affected spots from the image and their classification. An easy color distinction based approach is followed for segmentation of the sickness affected lesions. The system permits the skilled to guage the analysis results and provide feedbacks to the famers through a notification to their mobile phones.

The goal of this analysis is to develop an image recognition system which will acknowledge crop diseases. Image process starts with the digitized color image of sickness leaf. Some way of arithmetic morphology is used to phase these photos. Then texture, kind and color choices of color image of sickness spot on leaf were extracted, and a classification technique of membership perform was used to discriminate between the three varieties of diseases.

Keywords-Digital Photographs, Image Processing, Feature Extraction, Classification.

#### I. INTRODUCTION

The classification and recognition of crop diseases area unit of the most technical and economical importance within the agricultural trade. To automatize these activities, like texture, color and type, illness recognition system is possible. footage were no inheritable beneath laboratory condition pattern photographic equipment. Two major diseases sometimes found area unit Sun Burn, Yellow Mosiac were chosen for this analysis. The management of plants desires shut look notably for the management of illness which is able to have a control on production significantly and later the postharvest life. The attention observation of specialists is that the most approach

adopted in apply for detection of plant diseases. However this desires continuous look of specialists that may well be prohibitively pricey in large farms. Automatic noticeion of plant diseases could be a very important analysis topic as a result of it might prove edges in look large fields of crops and so automatically detect the symptoms of diseases as presently as they appear on plant leaves. So yearning for fast, automatic, less costly and proper methodology to note illness by scheming leaf area through picture element selection statistics. The leaf area look could be a crucial tool find out physiological choices related to the plant growth, chemical process & to hunt out water and environmental stress, would love of fertilization, for effective management and treatment.

This paper to boot presents an system integrated with machine vision techniques which is able to assist the farmers get the right information relating to their crops pattern their mobile. The uploaded footage of paddy captured by the mobile phones area unit attending to be processed inside the central server and so the an report area unit attending to be bestowed to an professional cluster for his or her opinion, world organization agency will then be able to send correct recommendations through a straightforward notification victimization the system, according to the severity of true.

#### **System summary:**

The system consists of a mobile application, will modification the farmers to need footage of plants pattern their mobile phones and send it to a central server where the central system at intervals the server can analyze the photographs supported visual symptoms pattern image method algorithms therefore on live the illness type. AN skilled cluster square measure planning to get on the market to examine the standing of the image analysis data and provide suggestions supported the report and their data, which can be sent to the farmer as a notification at intervals the applying.

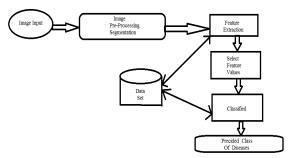
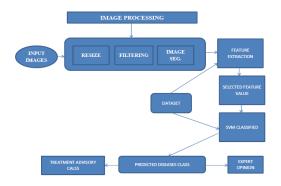




Fig1: System summary

### **System Development**

- 1) Input Image
- 2) Image Segmentation,
- 3) Feature Extraction,
- 4) Classification,
- 5) Prescribed Precaution.



# **II. Steps in Image Processing**

Filtering: Filtering in image method permits for selective lightweight of specific information. sort of techniques unit of measurement on the market

Enhancement: sweetening refers to accentuation, or sharpening of image choices like boundaries or distinction.

Segmentation: Segmentation is that the strategy of partitioning a digital image into multiple segments. Multilevel thresholding, Edge detection, active contours. Usually accustomed realize objects and bounds at intervals the image.

Feature Extraction: remodeling the input data into the set of choices is termed feature extraction. Geometric features-area, perimeter, disk shape, eccentricity. Mathematics features- mean, variance, entropy, correlation.

Classification: We tend to tend to use the thought of most feature similarities as a result of the idea for classification of the input image. During this stage, we tend to tend to measure the feature values of the input image and compare the geometer distance with choices of already the learned photos.

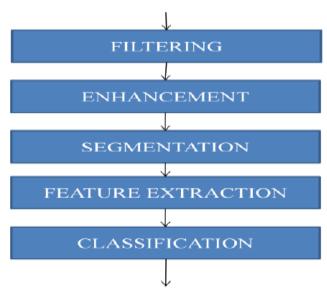
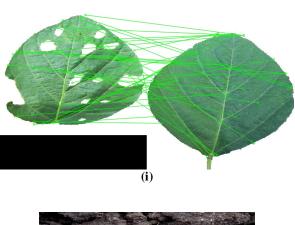



Fig2: Steps in Image Processing

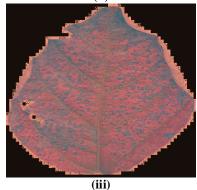
# III. THE PROPOSED APPROACH

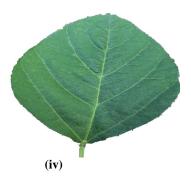
Figure a pair of the elemental procedure of the projected vision-based detection formula throughout this paper. First, the photographs of varied leaves unit attending to acquire using a camera. Then image-processing techniques unit applied to the non inheritable photos to extract useful choices that unit necessary for added analysis.

The in small stages procedure of the projected system:


- 1. RGB image acquisition
- 2. Convert the input image from RGB to HSV format.
- 3. Masking the green-pixels
- 4. Removal of cloaked inexperienced pixels
- 5. section the elements
- 6. Acquire the useful segments
- 7. Computing the choices victimization color-co-occurrence methodology
- 8. Analysis of texture statistics

Color Transformation Structure: firstly, the RGB photos of leaves unit non-heritable. Then RGB photos unit regenerate into Hue Saturation worth (HSV) color space illustration. RGB may be a good for color generation. however HSV model may be a good tool for color perception [7]. Hue could also be a color attribute that describes pure color as perceived by associate degree observer. Saturation refers to the relative purity or the amount of white light-weight added to hue and worth suggests that amplitude of sunshine. Once the transformation methodology, the Hue half is taken for added analysis. Saturation and worth unit born since it does not offer extra information. Masking and Removing inexperienced components: Masking implies that setting the constituent value during a image to zero or another background value. Throughout this step, we have a tendency to tend to see the for the most part inexperienced coloured pixels. After that, supported specific threshold price that is computed for these pixels. The inexperienced components of the part intensities area unit set to zero if it's however the pre-computed threshold value. Then red, inexperienced and blue components of this part is appointed to a value of zero by mapping of RGB components. [3] The inexperienced coloured pixels for the most part represent the healthy areas of the leaf which they are doing not add any valuable weight to illness identification.


Segmentation: From the upper than steps, the infected portion of the leaf is extracted. The infected region is then segmented into type of patches of equal size. Throughout this approach patch size of 32X32 is taken [1]. Getting useful Segments: throughout this step the useful segments area unit obtained. The scale of the patch is chosen in such how that


the numerous data is not lost. Not all segments contain necessary amount of information. Therefore the patches that area unit having over half of the info area unit taken into consideration for the any analysis [1]

Color co-occurrence Method: In math's texture analysis, texture choices area unit computed from the math's distribution of discovered mixtures of intensities at specific positions relative to each different at intervals the image. Abstraction Gray-level Dependence Matrices (SGDM) methodology is also a technique of extracting math's texture choices.









### II. CONCLUSION AND FUTURE SCOPE

After reviewing more than mentioned techniques and ways in which unit able to conclude that there are kind of however by that we've an inclination to will notice malady and nutrient deficiency of plants every has some execs more as limitations. On one hand visual analysis is least expensive and simple technique, it isn't as economical and reliable as others unit Image method is also a method most spoken of very high accuracy and least time are major blessings offered, but it backs away once implementing a lot of. Aboard the supply of cultivation tools, the farmers collectively would love access to correct information that they will use for economical crop management and there is no higher manner than providing them a service that they will use through their mobile phones.

### ACKNOWLEDGMENT

Authors want to acknowledge Principal, Head of department and guide of their project for all the support and help rendered. To express profound feeling of appreciation to their regarded guardians for giving the motivation required to the finishing of paper.

#### REFERENCES

- [1] International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, "Agricultural plant Leaf Disease Detection Using Image Processing", Vol. 2, Issue 1, January 2013.
- [2] International Journal of Computer Applications (0975 8887), "Plant Disease Detection using Image Processing A Review" Volume 124 No.16, August 2015.
- [3] International Journal of Computer Science and Information Technologies, "Plant Disease Detection Techniques Using Canny Edge Detection & Color Histogram in Image Processing" Vol. 5 (2), 2014.
- [4] International Journal of Computer Applications (0975 8887," Plant Disease Detection using Image Processing A Review" Volume 124 No.16, August 2015.
- [5] The 5th World Multi-Conference on Systemics, Cybernetics and Informatics, "A MATHEMATICAL MODEL FOR LOGARITHMIC IMAGE PROCESSING" Vol 13, SCI2001, July 22-25, 2001
- [6] International Journal of Innovative Research in Science, Engineering and Technology," Plant Disease Detection Using Image Processing Techniques" Vol. 4, Special Issue 6, May 2015.
- [7] International Journal of Modern Engineering Research (IJMER), "Applying image processing technique to detect plant diseases" Vol.2, Issue.5, Sep-Oct. 2012 pp-3661-3664.
- [8] Ms. Kiran R. Gavhale, Prof. Ujwalla Gawande, IOSR Journal of Computer Engineering (IOSR-JCE), "An Overview of the Research on Plant Leaves Disease detection using Image Processing Techniques", e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 1, Ver. V (Jan. 2014), PP 10-16
- [9] Jagadeesh D.Pujari, Rajesh Yakkundimath and Abdulmunaf. Syedhusain Byadgi, International Journal of Interactive Multimedia and Artificial Intelligence, "SVM and ANN Based Classification of Plant Diseases Using Feature Reduction Technique", Vol. 3, N°7 DOI: 10.9781/ijimai.2016.371.
- [10] Ajay A. Gurjar, Viraj A. Gulhane, International Journal of Electronics, Communication & Soft Computing Science and Engineering (IJECSCSE), "Disease Detection On Cotton Leaves by Eigenfeature Regularization and Extraction Technique", Volume 1, Issue 1.
- [11] Sachin.B.Jadhav, Prof.Dr.Sanjay B Patil, International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE), "Grading of Soybean Leaf Disease Based on Segmented Image Using K-means Clustering", Volume 4, Issue 6, January 2015
- [12] Supriya S. Patki, Dr. G. S. Sable, IOSR Journal of VLSI and Signal Processing (IOSR-JVSP), "A Review: Cotton Leaf Disease Detection", Volume 6, Issue 3, Ver. I (May. -Jun. 2016), PP 78-81 e-ISSN: 2319 – 4200, p-ISSN No.: 2319 – 4197
- [13] Mumpy Bhajipale, Sonali Kad, Neha Jagdale, Prof. Pradeep Laturkar, International Journal of Advance Engineering and Research Development," A Review On Detection Of Crop Diseases With The Help OF Image Processing Technique", Volume 3, Issue 25 Nov -2016
- [14] Arti N. Rathod, Bhavesh Tanawal, Vatsal Shah, International Journal of Advanced Research in Computer Science and Software Engineering, "Image Processing Techniques for Detection of Leaf Disease", Volume 3, Issue 11, November 2013