
 International Journal of Advance Research in Engineering, Science &
Technology

e-ISSN: 2393-9877, p-ISSN: 2394-2444

Volume 4, Issue 5, May-2017

All Rights Reserved, @IJAREST-2017

Impact Factor (SJIF): 4.542

80

Development of Verification IP for DDR2 memory with performance monitor

Gorwadia Sumit
1
, Mr. Jayesh Popat

2

PG student [VLSI system design], Elect. & Comm. department., MEFGI, Rajkot, Gujarat1

Assist. Prof., Elect. & Comm. department., MEFGI, Rajkot, Gujarat2

Abstract—The goal of function verification is to find the errors in the design given by the engineers and to check the

functionality of that design whether it give the expected output if not then change the design according to it to get desired

functionality of DUT (design under test). This paper show the latest approach to meet above requirement using the UVM

(Universal Verification Methodology).

Keywords—UVM, Verification, Environment, Verification IP, memory verification, System Verilog,

I. INTRODUCTION
The Universal Verification Methodology (UVM) is a standard verification methodology from the Accellera Systems

Initiative that was developed by the verification community for the verification community. UVM represents the latest
advancements in verification technology and is designed to enable creation of robust, reusable, interoperable verification IP
and test bench components. The UVM gives a System Verilog base class library and rules. The UVM class library makes an
unmistakable separation between the sequence that create stimulus and the structure which build verification environment.
Client or user can set up test bench and produce stimulus utilizing the UVM base classes.

UVM is a methodology for SoC functional verification that uses TLM standards for communication between blocks
and SV for its language or in other words it uses SV for creating components and TLM for interconnect between components.
Methodology is basically set of base class library which we can use to build our test benches. UVM main goals are: reusability
to reduce time to market and it is targeted to verify system from small to large concepts.

Figure 1. Verification flow of ASIC.

II. NEED OF UVM

Due to advancement in fabrication technology, more and more logic is being placed on single silicon die. Now, more

than 70% time is spent on verification so there is need for construction a reusable and robust verification environment.

Universal Verification Methodology was introduced to fulfill that goal. Also System Verilog is the only industry standard

hardware verification language which is supported by all three largest EDA vendors. But System Verilog is still not sufficient
to verify the design as it is remains under-specified as a language hence the UVM come to picture. System Verilog and UVM

now form a virtuous circle.

International Journal of Advance Research in Engineering, Science & Technology (IJAREST)
Volume 4, Issue 5, May 2017, e-ISSN: 2393-9877, print-ISSN: 2394-2444

All Rights Reserved, @IJAREST-2017
81

The class based System Verilog features that support constrained random verification are sufficiently well defined

and well implemented to allow the development of robust and portable verification class libraries, and the widespread use of

those libraries ensures the ongoing support of the necessary language features by the tool vendors.

2.1 UVM Phases

In UVM, all the component implements the same set of phases which are run in predefined phases during simulation. Phase

method is needed in order to synchronize the behavior of each component. The standards phases are as follows:

Figure 2. UVM Phases

2.1.1 Build:

It will create the child component instances as well as parent one.

2.1.2 Connect:

It is used to connect ports and exports on the child components. The connection can be ports to exports, exports to ports or

ports to ports.

2.1.3 End of elaboration:

This phase makes the environment aware of the address range to which the slave agent should respond. It also means that

verification environment has been completely assembled.

2.1.4 Start of simulation:

It will just notify the DUT that verification environment is configured and ready to simulate.

2.1.5 Run:

It runs the simulation. As shown in fig. 3, run phase is divided into several run phases. All the phases are represented by a

function which run in zero simulation time except run phase hence task is used to define run phase which consume time.

2.1.6 Extract Phase:

It is post processing component. It is used to extract data from different point of verification and scoreboard.

2.1.7 Check Phase:

It is post processing phase used to check whether any unexpected condition meet in verification environment.

2.1.8 Report:

International Journal of Advance Research in Engineering, Science & Technology (IJAREST)
Volume 4, Issue 5, May 2017, e-ISSN: 2393-9877, print-ISSN: 2394-2444

All Rights Reserved, @IJAREST-2017
82

It is also post processing phase. It will just generate the report of test.

2.1.9 Final phase:

It shows that all the phases of UVM are completed and terminated the simulation.

III. TESTBENCH ARCHITECTURE

The subsequent section describes the aspect of verification additives:

FIGURE 3. Verification Environment

3.1 Transaction

Transaction are basically the input parameter to the DUT. All of the transfer achieved among one of a kind component is

executed through transaction [2]. In comparison to VHDL indicators and Verilog wires, transaction represent communique at

an abstract level [3].

3.2 Driver

As the name endorse driver drive the dut indicators/signals. It essentially receives the transaction object from collection and

converts into the pin interest [2]. The transaction from its collection and controls the signal-level interface to the DUT [3].

3.3 Sequence

All the series will run on sequencer components. The series of transaction carried out to the dut to test its conduct. Now

whenever the sequencer demands the series of transaction, it's going to generate and carried out to the driver [2].

FIGURE 4. Sequence for read command

International Journal of Advance Research in Engineering, Science & Technology (IJAREST)
Volume 4, Issue 5, May 2017, e-ISSN: 2393-9877, print-ISSN: 2394-2444

All Rights Reserved, @IJAREST-2017
83

3.4 Monitor

A monitor is the passive element of verification surroundings. It just certainly tests the dut signal comes from interface yet it

does not power them at all [2]. Monitor site visitor’s collects coverage and send them to the numerous evaluation components

like coverage and scoreboard. It really works equal as driver but without triggering dut signals [1].

3.5 Agent

Agent is essentially container which includes display, collection and driving force. It has active and passive mode of

operation.

Active mode: In this driver and sequencer are instantiated and it drives the signals to the dut.

Passive mode: In this it will just sample the dut signal so only monitor is needed to instantiated.

3.7 Scoreboard

Scoreboard simply evaluate the reaction from dut against the expected reaction. So it delivers records about how typically

reaction matched with favored / expected one [2].

FIGURE 5. Scoreboard Analysis

3.8 Environment
Environment is at top of structure in test bench and it could comprise more than one agents depending on the design/RTL. All

the agents are connected in this layer.

3.9 Transaction Level Modelling
TLM, transaction-level modeling, is a modeling style for building highly abstract models of components and system. It relies

on transactions, objects that contain arbitrary, protocol-specific data to abstractly represent lower-level activity.

Transaction Level Communication

Transaction-level interfaces define a set of methods that use transaction objects as arguments. A TLM port defines the set of
methods to be used for a particular connection, while a TLM export supplies the implementation of those methods. Connecting

a port to an export allows the implementation to be executed when the port method is called.

Transactions are passed as parameter to call the function, which might be blocking (suspend and wait for some event before

returning) or non-blocking (return immediately) which is sufficient for basic synchronization within the verification

environment.

The use of TLM interfaces isolates each component in a verification environment from the others. The environment

instantiates a component and connects its ports/exports to its neighbor(s), independent of any further knowledge of the specific

implementation. Smaller components may be grouped hierarchically to form larger components. Access to child components is

achieved by making their interfaces visible at the parent level.

International Journal of Advance Research in Engineering, Science & Technology (IJAREST)
Volume 4, Issue 5, May 2017, e-ISSN: 2393-9877, print-ISSN: 2394-2444

All Rights Reserved, @IJAREST-2017
84

IV. RESULT

FIGURE 6. Data execution

FIGURE 7. UVM Report

Here in fig. 6, scoreboard shows what transaction is done on which memory location. The transactions made are all within

the size limit. If there is an error in size overflow it will show an error.

V. CONCLUSION

One of the most challenging tasks was building the first UVM working test bench environment. The different components

could not be tested individually, so all the environment had to be assembled in order to check efficiency of these components;

making it hard to trace the source of errors. Hence the issues like this it was helpful to manage the way in how and which

components reported debug messages. Automated test-cases are generated and given to the design. Functionality of The

DDR2 memory protocol is been Verified. Developing the Verification IP for any design architecture it becomes actual

modest by using UVM. UVM verifies the design in the most effective way.

REFERENCES

[1] Khaled Salah, “A UVM- Based Smart Functional Verification Platform: Concepts, Pros, Cons, and Opportunities”, 9th

International Design and Test Symposium, pp94-99, 2014, IEEE.

[2] B. Vaidya N. Pithadiya “An Introduction to Universal Verification Methodology” journal of information, knowledge and

research in electronics and communication engineering, volume – 02, ISSUE – 02, 2013.

[3] S. Raghuvanshi, V. Singh “Review on Universal Verification Methodology (UVM) Concepts for Functional Verification”
International Journal of Electrical, Electronics and Data Communication, ISSN: 2320-2084 Volume-2, Issue-3, March-

2014.

[4] Young-Nam Yun, “Beyond UVM for practical SoC verification”, SoC Design Conference (ISOCC), pp158-162, 2011.

[5] Universal Verification Methodology (UVM) 1.1 User’s Guide, Accellera, 2011.

[6] On-line resources from http://www.doulos.com/knowhow/sysverilog/uvm/

[7] Online source from

https://www.scribd.com/doc/193965916/Uvm-Cookbook-Complete-Verification-Academy

[8] uvm-cookbook-systemverilog-guidelines-verification-academy-150116202822-conversion-gate02.pdf

https://www.scribd.com/doc/193965916/Uvm-Cookbook-Complete-Verification-Academy

International Journal of Advance Research in Engineering, Science & Technology (IJAREST)
Volume 4, Issue 5, May 2017, e-ISSN: 2393-9877, print-ISSN: 2394-2444

All Rights Reserved, @IJAREST-2017
85

[9] Juan Francesconi, J. Agustin Rodriguez, Pedro M. Juli´an, “UVM Based Testbench Architecture for Unit Verification”,

2014 Argentine School of Micro-Nano electronics, Technology and Applications,

[10] C. Spear, System Verilog for Verification, Second Edition: A Guide to Learning the Testbench Language Features,

2nd ed. Springer Publishing Company, Incorporated, 2008.

[11] Janick Bergeron, Writing Testbenches: Functional Verification of HDL Models, Springer US, Kluwer Academic

Publishers, 2003.

[12] Ashwin P. Patel, Vyom M. Bhankhariya, Jignesh S. Prajapati, “An Overview of Transaction-Level Modeling in

Unviersal Verification Methodology”, Journal of Information, Knowledge and Research In Electronics And

Communication Engineering, 2013, IEEE.

[13] www.synopsys.com

[14] www.mentor.com

[15] www.design-reuse.com

http://www.synopsys.com/
http://www.mentor.com/
http://www.design-reuse.com/

