',

Impact Factor (S]IF): 4.542

International Journal of Advance Research in Engineering, Science &
Technology

e-ISSN: 2393-9877, p-ISSN: 2394-2444

Volume 4, Issue 5, May-2017
Development of Verification IP for DDR2 memory with performance monitor

Gorwadia Sumit®, Mr. Jayesh Popat®

PG student [VLSI system design], Elect. & Comm. department., MEFGI, Rajkot, Gujarat
Assist. Prof., Elect. & Comm. department., MEFGI, Rajkot, Gujarat®

Abstract—The goal of function verification is to find the errors in the design given by the engineers and to check the
functionality of that design whether it give the expected output if not then change the design according to it to get desired
functionality of DUT (design under test). This paper show the latest approach to meet above requirement using the UVM
(Universal Verification Methodology).

Keywords—UVM, Verification, Environment, Verification 1P, memory verification, System Verilog,

1 INTRODUCTION
The Universal Verification Methodology (UVM) is a standard verification methodology from the Accellera Systems
Initiative that was developed by the verification community for the verification community. UVM represents the latest
advancements in verification technology and is designed to enable creation of robust, reusable, interoperable verification IP
and test bench components. The UVM gives a System Verilog base class library and rules. The UVM class library makes an
unmistakable separation between the sequence that create stimulus and the structure which build verification environment.
Client or user can set up test bench and produce stimulus utilizing the UVM base classes.

UVM is a methodology for SoC functional verification that uses TLM standards for communication between blocks
and SV for its language or in other words it uses SV for creating components and TLM for interconnect between components.
Methodology is basically set of base class library which we can use to build our test benches. UVM main goals are: reusability
to reduce time to market and it is targeted to verify system from small to large concepts.

Figure 1. Verification flow of ASIC.

. NEED OF UVM
Due to advancement in fabrication technology, more and more logic is being placed on single silicon die. Now, more
than 70% time is spent on verification so there is need for construction a reusable and robust verification environment.
Universal Verification Methodology was introduced to fulfill that goal. Also System Verilog is the only industry standard
hardware verification language which is supported by all three largest EDA vendors. But System Verilog is still not sufficient
to verify the design as it is remains under-specified as a language hence the UVM come to picture. System Verilog and UVM
now form a virtuous circle.

All Rights Reserved, @IJAREST-2017 20

International Journal of Advance Research in Engineering, Science & Technology (IJAREST)

Volume 4, Issue 5, May 2017, e-ISSN: 2393-9877, print-ISSN: 2394-2444

The class based System Verilog features that support constrained random verification are sufficiently well defined

and well implemented to allow the development of robust and portable verification class libraries, and the widespread use of
those libraries ensures the ongoing support of the necessary language features by the tool vendors.

2.1 UVM Phases

In UVM, all the component implements the same set of phases which are run in predefined phases during simulation. Phase
method is needed in order to synchronize the behavior of each component. The standards phases are as follows:

Build

Phases connect

and_of_elaboration

i

start_of_simulation

~
A

T

pre_reset

post_reset

pre_configure

Eﬁ;m post_configure
pre_main
main
post_main
pre_shutdown

shutdown

post_shutdown

-
-

extract
Cleanup check

Phases report

i

Figure 2. UVM Phases

2.1.1 Build:
It will create the child component instances as well as parent one.

2.1.2 Connect:
It is used to connect ports and exports on the child components. The connection can be ports to exports, exports to ports or
ports to ports.

2.1.3 End of elaboration:
This phase makes the environment aware of the address range to which the slave agent should respond. It also means that
verification environment has been completely assembled.

2.1.4 Start of simulation:
It will just notify the DUT that verification environment is configured and ready to simulate.

2.1.5 Run:
It runs the simulation. As shown in fig. 3, run phase is divided into several run phases. All the phases are represented by a
function which run in zero simulation time except run phase hence task is used to define run phase which consume time.

2.1.6 Extract Phase:
It is post processing component. It is used to extract data from different point of verification and scoreboard.

2.1.7 Check Phase:
It is post processing phase used to check whether any unexpected condition meet in verification environment.

2.1.8 Report:

All Rights Reserved, @IJAREST-2017 31

International Journal of Advance Research in Engineering, Science & Technology (IJAREST)
Volume 4, Issue 5, May 2017, e-ISSN: 2393-9877, print-ISSN: 2394-2444
It is also post processing phase. It will just generate the report of test.

2.1.9 Final phase:
It shows that all the phases of UVM are completed and terminated the simulation.

1. TESTBENCH ARCHITECTURE

The subsequent section describes the aspect of verification additives:

Top

Test

Environment

Master Agent Slave Agent

Sequencer

Sequencer

Scoreboard

=171 T

Interface
Interface

DUT

FIGURE 3. Verification Environment

3.1 Transaction
Transaction are basically the input parameter to the DUT. All of the transfer achieved among one of a kind component is
executed through transaction [2]. In comparison to VHDL indicators and Verilog wires, transaction represent communique at

an abstract level [3].

3.2 Driver
As the name endorse driver drive the dut indicators/signals. It essentially receives the transaction object from collection and

converts into the pin interest [2]. The transaction from its collection and controls the signal-level interface to the DUT [3].

3.3 Sequence
All the series will run on sequencer components. The series of transaction carried out to the dut to test its conduct. Now

whenever the sequencer demands the series of transaction, it's going to generate and carried out to the driver [2].

class bank_pre extends uvm_sequence #(mem_seq_item);

class bank_actv_seq extends uvm_sequence#(mem_seq_item); uvm_object_utilsibank_pre);

uvm_object utils(bank_actv_seq); function new(string name = "bank_pre");
super.newiname);
endfunction

function new(string name = "bank_actv_seqg");
super.new(name); virtual task body();
endfunction: new uvm_do_with(req, {regq.c == 5;})
endtask
virtual task body(); endclass
uvm_do_with(req, {req.c == 2;}) class ddr_rd_seq extends uvm_sequence#(mem_seq_item);
endtask
endclass: bank_actv_seq bank_actv_seq b_act;

bank_rd_seq b_rd;
| . bank_pre b_pre;
class bank_rd_seq extends uvm_sequence#(mem_seq_item);
uvm_object utils(ddr_rd_seq);
uvm_object utils(bank_rd_seq); i i
function new(string name = “"ddr_rd_seq");
)) super.new(name);
Bunc tion new(string name = "bank_rd_seq"); endfunction
super.newiname) ;
endfunction virtual task body();
uvm_do (b_act);

. uvm_report_info(get_full_name(),"b_act", UVM_LOW);
virtual task body(); uvm_doi{b_rd);
uvm_do_with(req, {req.c == 4;1}) uvm_report_info(get_full_name(), "b_rd", UVM_LOW);
endtask uvm_do(b_pre); i o .
endclass: bank_rd_seq endtask uvm_report_info(get_full_name(),"b_pre", UVM_LOW);

endclass

FIGURE 4. Sequence for read command

All Rights Reserved, @IJAREST-2017 32

International Journal of Advance Research in Engineering, Science & Technology (IJAREST)
Volume 4, Issue 5, May 2017, e-ISSN: 2393-9877, print-ISSN: 2394-2444
3.4 Monitor
A monitor is the passive element of verification surroundings. It just certainly tests the dut signal comes from interface yet it
does not power them at all [2]. Monitor site visitor’s collects coverage and send them to the numerous evaluation components
like coverage and scoreboard. It really works equal as driver but without triggering dut signals [1].

3.5 Agent
Agent is essentially container which includes display, collection and driving force. It has active and passive mode of
operation.

Active mode: In this driver and sequencer are instantiated and it drives the signals to the dut.
Passive mode: In this it will just sample the dut signal so only monitor is needed to instantiated.

3.7 Scoreboard
Scoreboard simply evaluate the reaction from dut against the expected reaction. So it delivers records about how typically
reaction matched with favored / expected one [2].

forever begin
walt(pkt_qu.size() = 0);
mem_pkt = pkt_qu.pop_fronti};

if(mem_pkt.wr_en) begin
sc_mem[mem_pkt.addr] = mem_pkt.wdata;
uvm_info(get_type_name(),$sformatf("---: :WRITE DATA::---"), UVM_LOW)
uvm_info(get_type_name(), $sformatf("Addr: %0h", mem_pkt. addr), UVM_LOW)
uvm_info(get_type_name(), $sTormatf("Data: , mem_pkt. wdata), UVM_LOW)
uvm_info(get_type_name(),"------------- ", UVM_LOW)

end
else if(mem_pkt.rd_en) begin
if(sc_mem[mem_pkt.addr] == mem_pkt.rdata) begin

uvm_info(get_type_name(),$sformatf("---::RAD DATA match::---") UVM_LOW)

uvm_info(get_type_name(), $sformatf("Addr: %0h", mem_pkt. addr), UVM_LOW)

uvm_info(get_type_name(),$sformatf("Expected Data: %0h Actual Data: %0h", sc_mem[mem_pkt.addr], mem_pkt.rdata),UVM_LOW)
uvm_info(get_type_name(),"------------- ", UVM_LOW)

end

else begin

uvm_info(get_type_name(),$sTormatT("---::RAD DATA Mismatch::---"),UVM_LOW)

uvm_info(get_type_name(), $sformatf("Addr: %Oh", mem pkt.addr), UVM_LOW)

uvm_info(get_type_nami sformatf("Expected Data: %0h Actual Data: %0h", sc_mem[mem_pkt.addr], mem_pkt.rdata), UVM_LOW)
uvm_info(get_type_name(),"------------- "L UVM_LOW)

end

end
endtask

FIGURE 5. Scoreboard Analysis

3.8 Environment
Environment is at top of structure in test bench and it could comprise more than one agents depending on the design/RTL. All
the agents are connected in this layer.

3.9 Transaction Level Modelling
TLM, transaction-level modeling, is a modeling style for building highly abstract models of components and system. It relies
on transactions, objects that contain arbitrary, protocol-specific data to abstractly represent lower-level activity.

Transaction Level Communication

Transaction-level interfaces define a set of methods that use transaction objects as arguments. A TLM port defines the set of
methods to be used for a particular connection, while a TLM export supplies the implementation of those methods. Connecting
a port to an export allows the implementation to be executed when the port method is called.

Transactions are passed as parameter to call the function, which might be blocking (suspend and wait for some event before
returning) or non-blocking (return immediately) which is sufficient for basic synchronization within the verification
environment.

The use of TLM interfaces isolates each component in a verification environment from the others. The environment
instantiates a component and connects its ports/exports to its neighbor(s), independent of any further knowledge of the specific
implementation. Smaller components may be grouped hierarchically to form larger components. Access to child components is
achieved by making their interfaces visible at the parent level.

All Rights Reserved, @IJAREST-2017 23

International Journal of Advance Research in Engineering, Science & Technology (IJAREST)
Volume 4, Issue 5, May 2017, e-ISSN: 2393-9877, print-ISSN: 2394-2444

V. RESULT
UVM_INFO @ 8: uvm_test_top.env.mem_agnt.sequenceré@seq [uvm_test_top.env.mem_agnt.sequencer.seq] Start_of_body
ADDR = 3cb3 WDATA = c77501ed
ADDR = 1lcTf WDATA = 2b62a34
3# ADDR = 3Te5 WDATA = e738dT63
UVM_INFO verilog_src/uvm-1.ld/src/base/uvm_objection.svh({1268) @ 8: reporter [TEST_DONE] ‘run' phase is ready to proceed to the 'extract' phase

FIGURE 6. Data execution

--- UVM Report Summary ---

#

** Report counts by severity

UVM_INFO : 39

UVM_WARNING : [¢]

UVM_ERROR : [¢]

UVM_FATAL :]

% Report counts by id

[Questa UVM] 2

[RNTST] 1

[TEST_DONE] 1

[uvm_test top] 5

[uvm_test_top.env] 6

[uvm_test_top.env.mem_agnt] 8

[uvm_test top.env.mem agnt.driver] 1

[uvm_test_top.env.mem_agnt.moniter] 7

[uvm_test_top.env.mem_agnt.sequencer.seq] 1

** Note: sfinish : /tools/mentor/questal0.2c-64/questasim/linux/../verilog_src/uvm-1.1d/src/base/uvm_root.svh(430)
Time: @ ns Iteration: 228 Instance: /tbench_top
[sumit.gorwadia@vnc3 ~/DDR2]s I

FIGURE 7. UVM Report

Here in fig. 6, scoreboard shows what transaction is done on which memory location. The transactions made are all within
the size limit. If there is an error in size overflow it will show an error.

V. CONCLUSION

One of the most challenging tasks was building the first UVM working test bench environment. The different components
could not be tested individually, so all the environment had to be assembled in order to check efficiency of these components;
making it hard to trace the source of errors. Hence the issues like this it was helpful to manage the way in how and which
components reported debug messages. Automated test-cases are generated and given to the design. Functionality of The
DDR2 memory protocol is been Verified. Developing the Verification IP for any design architecture it becomes actual
modest by using UVM. UVM verifies the design in the most effective way.

REFERENCES

[1] Khaled Salah, “A UVM- Based Smart Functional Verification Platform: Concepts, Pros, Cons, and Opportunities”, ot
International Design and Test Symposium, pp94-99, 2014, IEEE.

[2] B. Vaidya N. Pithadiya “An Introduction to Universal Verification Methodology” journal of information, knowledge and
research in electronics and communication engineering, volume — 02, ISSUE — 02, 2013.

[3] S. Raghuvanshi, V. Singh “Review on Universal Verification Methodology (UVM) Concepts for Functional Verification”
International Journal of Electrical, Electronics and Data Communication, ISSN: 2320-2084 Volume-2, Issue-3, March-
2014,

[4] Young-Nam Yun, “Beyond UVM for practical SoC verification”, SoC Design Conference (ISOCC), pp158-162, 2011.
[5] Universal Verification Methodology (UVM) 1.1 User’s Guide, Accellera, 2011.

[6] On-line resources from http://www.doulos.com/knowhow/sysverilog/uvm/

[7] Online source from

https://www.scribd.com/doc/193965916/Uvm-Cookbook-Complete-Verification-Academy

[8] uvm-cookbook-systemverilog-guidelines-verification-academy-150116202822-conversion-gate02.pdf

All Rights Reserved, @IJAREST-2017

https://www.scribd.com/doc/193965916/Uvm-Cookbook-Complete-Verification-Academy

International Journal of Advance Research in Engineering, Science & Technology (IJAREST)
Volume 4, Issue 5, May 2017, e-ISSN: 2393-9877, print-ISSN: 2394-2444
[9] Juan Francesconi, J. Agustin Rodriguez, Pedro M. Juli'an, “UVM Based Testbench Architecture for Unit Verification”,
2014 Argentine School of Micro-Nano electronics, Technology and Applications,

[10] C. Spear, System Verilog for Verification, Second Edition: A Guide to Learning the Testbench Language Features,
2nd ed. Springer Publishing Company, Incorporated, 2008.

[11] Janick Bergeron, Writing Testbenches: Functional Verification of HDL Models, Springer US, Kluwer Academic
Publishers, 2003.

[12] Ashwin P. Patel, Vyom M. Bhankhariya, Jignesh S. Prajapati, “An Overview of Transaction-Level Modeling in
Unviersal Verification Methodology”, Journal of Information, Knowledge and Research In Electronics And
Communication Engineering, 2013, IEEE.

[13] www.synopsys.com
[14] www.mentor.com

[15] www.design-reuse.com

All Rights Reserved, @IJAREST-2017 35

http://www.synopsys.com/
http://www.mentor.com/
http://www.design-reuse.com/

