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Abstract –Now a day sequential processing is certainly not sufficient for a large data 

computation in the area of computer science and technology. The need for high-performance 

computation is ever growing, even though certain problem sets remain within the area of high-

performance computing with applications such as Weather Forecasting, Quantum Physics, and 

Climate Research etc. Within the commercial area of computation, NVIDIA has an architectural 

framework (NVIDIA CUDA)to harness the power of GPU’s which was previously only been 

utilized for graphics application like 3D games, but now it has been used for certain types of 

high-performance computation. In this paper, we will take a critical look at different techniques 

of Matrix multiplication operation. This paper perform the Matrix multiplication problem with 

different implementation techniques, and the results has compared on the basis of execution time 

and find which technique is the most efficient approach for our problem set (matrix operation of 

n size matrices). 

 

Keyword:-GPU, NVIDIA CUDA, Shared Memory, Tiling, Matrix Multiplication, SIMD. 

 

     I. INTRODUCTION 

 

Matrices and Matrix operations are widely used in mathematical modeling of various 

processes, phenomena, and systems. Matrix calculations are the basis of many scientific and 

engineering calculations. Computational mathematics, physics, economics are only some of the 

areas of their application. Matrix multiplication is a fundamental building block for scientific 

computing and is one of the most important approaches to understanding parallel programming 

in GPU [1][2]. 

The simultaneous use of more than one processor to execute a program is an example of 

SIMD (single instruction multiple data) process [3]. Ideally, the parallel processing makes a 

program run faster because there are more engines (CPUs) running [4]. In practice, it is often 

difficult to divide a program in such a way that separate CPUs can execute different portions 

without interfering with each other. 

http://www.webopedia.com/TERM/R/run.html
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CUDA is a general purpose parallel architecture that utilizes a parallel compute engine in 

GPUs to thus carries out the complex computational problem in less time span than it would 

have if that same problem would have been executing on a CPU[5][6]. GPUs have been utilized 

within the graphic field for some time now and have now stepped into other fields that need 

high-performance computation. Fields such as Medical Imagining, fluid dynamics, and 

environmental science are some fields are seeking to utilize the potential power of GPUs to solve 

existing and current problems. 

 CUDA is a library provided by NVIDIA, it provides extended functionalities in C 

language by adding CUDA specific functions. Within this paper, we would take a look at the 

different optimization techniques Naïve matrix multiplication [7] on CPU, matrix multiplication 

on GPU using Shared and Non-Shared memory and increase floating portion by outer product in 

trying to optimize a N*N size matrix. 

 

GPU and CUDA 

 CUDA (Compute Unified Device Architecture) is a library provided by NVIDIA to 

execute processes in parallel [8].This is an application programming interface (API) to help 

communicate between device and user. There are CUDA specific functions or methods defined 

which meant to run on CUDA library only. These are used along with C and C++ programming 

language. To convert a single processor specific program into CUDA capable programs the 

programmer needs to modify it accordingly. The CUDA program is generally divided into two 

parts: the main program executes in the CPU, whereas the parallel portion of the program is 

executed in GPU. This GPU part is called by the main program and data is sent to GPU for 

execution where the instructions are executed on the data after the calculation result is sent back 

to CPU [9]. 

GPU (Graphics Processing Unit) was primarily developed to fulfill the need of 

algorithms used in computer graphics. It has hundreds of cores which were able to execute 

multiple threads simultaneously. Later it was proposed that this technology can be useful for 

non-graphic process also if one can divide a single process into multiple threads and distribute 

them to multiple processors, the overall computation time can be reduced drastically. There are 

several types of memory present in the GPU like device memory, shared memory, constant 
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cache, texture cache, and registers [10][12]. To manipulate data in this memory and to use the 

multiple cores to their programmers must write the CUDA programs very carefully. 

 

Types of CUDA memory: 

CUDA devices have several different memory spaces; we will discuss in brief to all types 

of memory organization and figure 1 shows the memory organization and basic units of CUDA 

model.  

 Global, local, texture, constant, shared and register memory .The only two types of 

memory that actually reside on the GPU chip are register and shared memory. Local, Global, 

Constant, and Texture memory all reside off-chip. Local, Constant, and Texture are all cached. 

Data stored in shared memory is visible to all threads within that block and lasts for the 

duration of the block. This is invaluable because this type of memory allows for threads to 

communicate and share data between one another. Each Block has a Shared memory which is 

shared by all its threads for communication within the block. It is around 50 to 100 MB. The 

hardware which we have used for this implementation has 49152 Bytes per block Shared 

Memory.  

In the GPU, register is fastest accessible memory present. Data stored in register 

memory is visible only to the thread that wrote it and lasts only for the lifetime of that thread. 

The hardware which we have used for this implementation has 32768   per block registers. 

Local memory has the same scope rules as register memory, but performs slower than 

register. 

Data stored in the global memory is visible to all threads within the application (including 

the host), and lasts for the duration of the host allocation. 

 Constant memory is used for data that will not change over the course of a kernel 

execution and is read only. Using constant rather than global memory can reduce the required 

memory bandwidth, however, this performance gain can only be realized when a warp of threads 

read the same location. 

Another variety of read-only memory on the device is texture memory. When all reads in 

a warp are physically adjacent, using texture memory can reduce memory traffic and increase 

performance compared to global memory. 
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Important Units of CUDA Architecture: 

 CUDA organizes a parallel computation using the abstractions of threads, blocks, and 

grids which we will describe in brief.  

 

 

Figure 1: Memory model of the NVIDIA device 

The basic unit of CUDA architecture is a thread. Each thread runs on separate cores of 

multiprocessors and each thread can have a pair of Register memory for fast access. Threads are 

identified by threadIdx, which can be 1D, 2D or 3D. Every thread uses its index to access 
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elements in an array such that the collection of all thread cooperatively processes the entire data 

set. 

A block is a logical unit which contains multidimensional thread. Block is the group of 

threads and is identified by blockIdx. The GPU is organized as a collection of multiprocessors 

(MPs), with each multiprocessor responsible for handling one or more blocks in a grid. A block 

is never divided across multiple MPs. 

A grid is a group of blocks. An entire Grid is handled by a single GPU. There is no 

synchronization at all between the blocks. A Grid is started in the synchronous form in the CPU, 

but there can be multiple Grids running at the same time. 

 

II. LITERATURE SURVEY 

 

“Improving performance of Matrix Multiplication and FFT on GPU” shows enhancing the 

performance of single precision matrix-matrix multiplication subprogram (SGEMM of BLAS) 

and single-precision FFT using CUDA, which is matrix multiplication operation on the basis of 

computational-intensive and memory bandwidth. 

Conclusion of the paper is that Xiang Cui et al. uses CUBLAS 1.0 and CUBLAS 2.0 and 

compares the Gigaflops performance of source code with largest problem size and got 5% 

improved performance of CUBLAS 2.0 than previous version [5]. 

 

“An efficient sparse Matrix Multiplication for skewed matrix on GPU” presents an algorithm for 

sparse matrix multiplication named “ALIGNED_COO” which is an extension to COO 

(coordinate) format to enhance the performance of large sparse matrix having skewed 

distribution of non-zero elements. ALIGNED_COO format helps to gain better performance 

without any extra memory overhead. 

Conclusion of the paper is that M. Shah at el. try to improve the performance of mainly three 

factors of sparse matrix which is as load balancing, alignment and synchronization free 

distribution of work load on GPU. The performance of ALIGNED_COO is found better over 

other sparse formats for large set of sparse matrix [4]. 
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“Reducing Vector I/O for Faster GPU Sparse Matrix-Vector Multiplication” show the majority 

of the bandwidth consumed by accesses to the vector I/O for most matrices and the problem is 

fully utilization of power of GPU. Two techniques used to significantly reduces the I/O for 

vector accesses, CUSP SpMV algorithm and yaSpmv algorithm. 

Conclusion of the paper is that with the use of these two techniques we can decreases the I/O for 

vector accesses for GPU sparse matrix vector multiplication which forms a dense row from 

sparse ones, and partial sums, which compute sums using values in shared memory to reduce I/O 

in the next SpMV iteration and then full utilizing the power of GPU and get consistently better 

performance [12]. 

“Performance Drawbacks for Matrix Multiplication using Set Associative Cache in GPU 

Device” introducing drawbacks of performance of shared memory processors within the 

execution of simple matrix multiplication algorithm and, why drawbacks appears for specific 

problem sizes. 

Conclusion of the paper is that the main reason is cache storage organization and drawbacks 

caused by mapping of matrix elements onto one cache set, instead of using the entire cache set. 

Set associative cache in GPU can seriously degrade the performance of GPU and can increases 

execution time [1]. 

“High Performance Pattern Matching on Heterogeneous Platform” introducing a pattern 

matching algorithm named as PFAC algorithm (parallel failure-lessAho-corasick algorithm) 

which is an efficient and extended approach of Aho-corasick (AC) algorithm with linear 

complexity and, compare the sequential and parallel approach. 

Conclusion of the paper is that, when sequential version of the algorithm is used with single 

thread on CPU, single thread build state machine and start to search the input data character by 

character which is very slower approach but when using PFAC algorithm the memory efficiency 

of GPU version is very much more than sequential version due to removing the failure transition 

from state transition machine. The experimental result shows that PFAC algorithm is 15% 

speedup than Aho-corasick algorithm [18]. 
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“Real-Time Implementation of the Vertex Component Analysis Algorithm on GPUs” presenting 

a new parallel implementation of the vertex component analysis (VCA) algorithm for spectral 

unmixing of remotely sensed hyper spectral data on commodity graphics processing units. There 

has four VCA algorithms use in the experiment, first develop a serial version then another three 

are parallel version algorithms, one using NVIDIA’s CUDA, another is CUDA basic linear 

algebra subroutines library (CUBLAS), and the last is CUDA linear algebra library (CULA). 

Conclusion of the paper is that, this implementation has tested on an NVIDIA Fermi GPU and is 

faster than the corresponding C version and the original Mat lab codes (both serial and parallel 

code). It concluded that CUBLAS parallel version VCA algorithm gives better performance than 

the rest of another parallel and serial version algorithm [16]. 

“Improving GPU Memory Performance with Artificial Barrier Synchronization” introducing an 

important mechanism for a block of threads to monitor data consistency on GPU, called Barrier 

Synchronization. This study provides a different viewpoint for barrier synchronization on GPU 

such as, adding barrier synchronization can improve the performance of some memory-intensive 

applications and preserve access data locality. 

Conclusion of the paper is that the artificial barrier synchronization model relieves contention for 

the caches and DRAM system and preserve access data locality on the GPU [10]. 

 

III. PROBLEM IDENTIFICATION 

 

After studied all the above papers the conclusion is that the basic problem is coming in 

memory section i.e. memory organization, when uses large amount of data as input, calculation 

is not done in proper way, it takes garbage value. The main reason of the problem is cache 

storage organization and defect caused by mapping of elements of matrix on to single cache set 

instead of using the entire cache set. Over all degrade the performances and machine taking 

increased execution time instead actual execution time. This paper presents a matrix 

multiplication problem on the GPU and CPU and comparing the execution time with the use of 

NVIDIA GeForce GT 525M machine. 
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IV. SPECIFICATION 

 

The testing platform information is as followed:- 

CPU specification:- 

Intel (R) core (TM) i3-2350M CPU @ 2.30 GHz 

System memory:- 4GB(installed memory) 

 

Software environment of the testing platform:- 

Software environment:- Windows7 (32-bit operating system) 

Development tools:-   Microsoft visual studio 2010 

Development language: -  CUDA c 

CUDA version: -  CUDA Toolkit 6.5 

GPU specification:- 

The table shows capabilities of a GPU which use for performing experiment. 

 

Table 1: NVIDIA GPU specification 

Device name NVIDIA GeForce GT 525 M 

Compute capability 2.1 

Total amount of global memory 1024 MB 

Number of multiprocessors 2(48 CUDA Core/MP) 

Number of streaming prospectors cores 96 CUDA core 

Texture fill rate 9.6 billion/second 

Memory clock rate 900 MHz 

Total amount of constant memory 65536 bytes 

Processor clock tester 1200 MHz 

Memory interface DDR3 

Memory interface width 128 bit 

Memory bandwidth 28.8 GB/second 

Total amount of shared memory per block 49152 bytes 
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Total no. of registers available per block 32768 

Warp size 32 

Max. no. of threads per multiprocessor 1536 

Max. no. of threads per block 1024 

Max. dimension size of a thread block<x,y,z> 1024,1024,64 

Max. dimension size of a grid size<x,y,z> 65535,65535,65535 

Texture alignment 512 bytes 

Max memory pitch 2147483647 bytes 

 

 

V. EXPECTED RESULT 

 

Implementation of matrix multiplication problem is also test on an NVIDIA Fermi GPU, so the 

expectation is that the parallel version of CUDA code for GPU should performs better then the 

CPU version. Barrier synchronization function is used in implementation of paper, according to 

the conclusion of paper is that improve the computational performance of GPU when uses this 

function in source code. Barrier synchronization function uses in matrix multiplication algorithm 

for GPU version, so there should be enhanced elapsed time for GPU execution on this particular 

GPU machine. This paper, perform a matrix multiplication problem in sequential and parallel 

approach using three different techniques, CPU execution, Non-shared GPU execution and, 

shared memory GPU execution. Both technique of GPU execution is parallel approach and the 

CPU execution is sequential technique approach. After simulation process of execution of 

programs, comparing CPU and GPU performance as execution time of each data set or matrix 

size and expect that the CPU execution time for small set of matrix size is less than the GPU 

execution time of both parallel approaches. But when increase the matrix size, the execution time 

of CPU should be always more than that of GPU execution time. Because time spend for 

transferring data from/to CPU to GPU and vice versa on the GPU is negligible for large amount 

of data set or input data where as the calculation time for CPU is higher than GPU. Main reason 

behind this the GPU has number of hundred processors which works parallel instead of single 

processor as a CPU. 
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